{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "8097fe4f", "metadata": {}, "source": [ "# Conveniently shifting the first level\n", "There is a convenient way to consider an additional detuning of the first level. This is equivalent to shifting all levels except the first in the contrary direction of this detuning and changing only the frequency of the lasers coupling to the first level. \\\n", "We look again at the Raman system with constant lasers and show how the shift is applied." ] }, { "cell_type": "code", "execution_count": 2, "id": "2325838c", "metadata": {}, "outputs": [], "source": [ "from atomcalc import Level, Laser, Decay, System, plot_pulse" ] }, { "attachments": {}, "cell_type": "markdown", "id": "bf4aef4d", "metadata": {}, "source": [ "We define the same parameters as in the first example but with an additional detuning called `shift`." ] }, { "cell_type": "code", "execution_count": 3, "id": "57ba3b5d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAGdCAYAAAA/jJSOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrMElEQVR4nO3deVxU5f4H8M8Mw8ywb8qmKLjgiopruJQaiqakaZpKit2WW2ll3t/NvLf0WpnarWwzK8u0m4hLLqXmkuKGuGG44S7mCi7IjCyzP78/jCkSkGVmDgOf9+s1r1fnnOc85zMnnPlyeM5zZEIIASIiIiIiqhS51AGIiIiIiJwRC2kiIiIioipgIU1EREREVAUspImIiIiIqoCFNBERERFRFbCQJiIiIiKqAhbSRERERERVwEKaiIiIiKgKFFIHqAqLxYKrV6/Cy8sLMplM6jhERERUAUII3LlzB6GhoZDLeS2PnJ9TFtJXr15FWFiY1DGIiIioCi5duoSGDRtKHYOo2pyykPby8gJw9x+it7e3xGmIiIioIrRaLcLCwqzf40TOzikL6eLhHN7e3iykiYiInAyHZVJtwQFKRERERERVwEKaiIiIiKgKWEgTEREREVUBC2kiIiIioipgIU1EREREVAUspImIiIiIqoCFNBERERFRFbCQJiIiIiKqAhbSRERERERVUOlCeufOnYiPj0doaChkMhnWrFlj3WY0GjFlyhRERUXBw8MDoaGhGDduHK5evVqij9zcXCQkJMDb2xu+vr54+umnkZ+fX+03Q0RERETkKJUupAsKCtC+fXvMmzfvnm2FhYU4dOgQ3nzzTRw6dAirVq3CqVOn8Oijj5Zol5CQgOPHj2PLli1Yt24ddu7cieeee67q74KIiIiIyMFkQghR5Z1lMqxevRpDhw4ts82BAwfQtWtX/Pbbb2jUqBFOnDiB1q1b48CBA+jcuTMAYOPGjXjkkUdw+fJlhIaG3ve4Wq0WPj4+0Gg08Pb2rmp8IiK7MurNZW6TyQGFq0vF2soAhbKKbQ1moKxPeRngWsW2JoMZ5X17uKqq2NZohrCUvo2cH7+/qbZR2PsAGo0GMpkMvr6+AIC0tDT4+vpai2gAiI2NhVwux759+/DYY4/d04der4der7cua7Vae8cmIqq2r17ZUea2Rq39EP9ytHV54T93wWSwlNo2tKk3HvvnH5+Z3/0rFboCU6lt64d5YOS/u1mXl07fizu39fe0C3c1ws9TiS6TusI1yAMAsGLmftzOKSq1Xy8/FcbN6mFdXvXfg7hxqaDUtmoPBZ7+4EHr8k8f/4qr50r/3FYo5fj7J72tyz/PP4KLmbetyxO+6FvqfkRENYFdbzbU6XSYMmUKRo8ebf3NMzs7G4GBgSXaKRQK+Pv7Izs7u9R+Zs2aBR8fH+srLCzMnrGJiOxOd/x4iWVLka7stqdPl1g2azRltjWczyqxbLyeU2q7cKUJjYQCF7Yd+KPt5Utl9vvXfv56nPLy/TX/n/31ff/1vBAR1WR2uyJtNBoxcuRICCEwf/78avU1depUTJ482bqs1WpZTBNRjffQzlfL3ObRqzuAJ63LDx76D0RR6VeD3Tt1BDDGutzrxPsw384rta26dSsAo6zLPS98CeO1khcpdH6h8On1L1iEGe5t/7iwEXM9CYZzpRfIriHBAIZZlx/QrIEu80SpbV38fAHEW5e76bagMP1QqW1lbm4ABliXOyMVBTv3/KnF4VL3IyKqCexSSBcX0b/99hu2bdtWYhxUcHAwrl+/XqK9yWRCbm4ugoODS+1PpVJBpVLZIyoRkd20PphW9kaXkmN/W+3aVnZbeck/HrbY8nOF2zZftwZ/HaC8b84yQA/cUWrQJqq3dX2z5UvvaWslk5VYbPL9IsBS+lCUvwpfML/CbRt/8hFgLnsMOBFRTWLzQrq4iD5z5gxSUlIQEBBQYntMTAzy8vKQnp6OTp06AQC2bdsGi8WCbt26ldYlEZFTkru7S9/Wza3E8uWTx+Gh9QBUQP1ezcttW26/arV92vKiCRE5kUoX0vn5+Th79qx1OSsrCxkZGfD390dISAgef/xxHDp0COvWrYPZbLaOe/b394dSqUSrVq0wYMAAPPvss/jiiy9gNBoxceJEjBo1qkIzdhARUdUIIbB/yXJ0VcVCQCAgppnUkYiInFqlC+mDBw+iT58+1uXiscuJiYn4z3/+gx9//BEA0KFDhxL7paSkoHfv3gCAJUuWYOLEiXj44Ychl8sxfPhwfPLJJ1V8C0REVBHn0vfDNVsGBACKhh5w8VJKHYmIyKlVupDu3bs3ypt6uiLTUvv7+yMpKamyhyYioiqyWMzYvXQx2nn0BAB4dij9nhQiIqo4u05/R0RENUPmjm0ouHYL9VUNAQBubetJnIiIyPmxkCYiquWMBj1SVyxBA/dmkMlkcG3oCYUvb+ojIqouFtJERLVcxqb1yL91E419owDwajQRka2wkCYiqsV0+fnYv3o5lHI16rnenRmJhTQRkW2wkCYiqsX2/7gSuoJ8RDboBpmQwTXYHa71Kj5fNBERlY2FNBFRLXUn9yZ+3XB3StKWjboDANRteDWaiMhWWEgTEdVSaSuSYDIaENYiCi7X705NymEdRES2w0KaiKgWunX5Eo6l/AIA6N79CcAkoAhQwzW44o8XJyKi8rGQJiKqhXYnfwchLGja+QG45d6d6k7dth5kMpnEyYiIag8W0kREtczV0ydw9kAaZDI5eo4YC93J2wAAdw7rICKyKRbSRES1iBACO5csAgC06R0Lj0JPCIMZLj5KuDbwlDYcEVEtw0KaiKgWyfr1IK6cPA6FqxLdR4xB0bGbAAC3NvUgk3NYBxGRLbGQJiKqJSwWM3YlLQIARA+Mh6evP4pO5AIA3NoGSJiMiKh2YiFNRFRLnNi1HTcv/QaVhwe6DhkB/XkNRJEJcg9XKMN9pI5HRFTrsJAmIqoFTAYDUpd/DwDoOmQE1J6efxrWEcBhHUREdsBCmoioFsjYvB53bt6Ap38AogfGQ1gEio7fAsCHsBAR2QsLaSIiJ6cvLMC+1csBAN1HJsBVqYLhohaWfCNkaheomnBYBxGRPbCQJiJycgd+/AG6/DvwbxCGNg8+DAAoOvb71ehWAZAp+FFPRGQP/HQlInJi+bm3kL5+LQCg1+hEyF1cIIT4Y3w0Z+sgIrIbFtJERE4sbeVSmAx6hEa2QtPO3QAAxiv5MOfpIXOVQ9XcT+KERES1FwtpIiInlXv1Mo6mbAYA9EoYD5ns7swcxcM61C39IVe6SJaPiKi2YyFNROSkdid/B2GxoEmnrmjYsg0AlBzW0YbDOoiI7ImFNBGRE7p25hTO7NsDmUyOXqPGWdebrhfCdLMIcJFB3dJfwoRERLUfC2kiIicjhMDOpG8BAK0f7It6jcKt26zDOpr7Qa5WSBGPiKjOYCFNRORkLmSk43LmMbi4uqL7yDEltnG2DiIix2EhTUTkRITFgl1JiwAA0QPi4V0v0LrNdKsIxmsFgBxQt2IhTURkbyykiYicyInUHbhx8QJU7h7oOnREiW3FjwRXRfjAxcNVinhERHUKC2kiIidhMhqRuux/AIAuQx6Hm6dXie1/DOuo5/BsRER1EQtpIiIncWTLBmhvXIennz86Dowvsc2s0cNw8Q4ATntHROQoLKSJiJyAvrAAaauWAQBiRoyBq0pdYnvxsA5lY2+4eKscno+IqC5iIU1E5AQO/rQKujta+IU2RNve/e7ZzoewEBE5HgtpIqIariDvNg6uXwMA6DVqHOQuJR/7bc43QJ+lAcDx0UREjsRCmoiohktbuRQmvR4hzVqgWdeYe7brTuQCAnAN9YDCX11KD0REZA8spImIarDb167gyNaNAIBeCeMhk8nuacPZOoiIpMFCmoioBtu97HsIiwUR0Z0R1jrqnu0WnQm6s3kAWEgTETkaC2kiohoq++xpnE7bBchk6DU6sdQ2uhO5gFlAEegG10B3ByckIqrbWEgTEdVAQgjsWroIANC6Vx/UbxxRars/Zuvg1WgiIkdjIU1EVAP9duRXXDx2BC4KBXqMfLLUNhaDGbrTtwFwWAcRkRRYSBMR1TDCYsHOpEUAgA5xg+BdP7DUdvrTtyGMFrj4qeAa6uHAhEREBLCQJiKqcU7u2YkbF85D6eaOrkNHltnuz8M6SpvNg4iI7IuFNBFRDWI2GZG67H8AgC6PDoe7t0+p7YTJgqITuQAAt6iqD+uYP38+2rVrB29vb3h7eyMmJgY///xzlfsjIqpLWEgTEdUgh7dshOZ6Djx8/dDpkSFlttOdy4PQmyH3UkIZ5lXl4zVs2BCzZ89Geno6Dh48iL59+2LIkCE4fvx4lfskIqorFFIHICKiuwxFhdi7KhkAEPP4GLiqy35KYdHR4mEdAZDJqz6sIz4+vsTyzJkzMX/+fOzduxdt2rSpcr9ERHUBC2kiohri4LrVKNJq4BcSirZ9+pXZTpgFdCduAQDc2gbY7PhmsxkrVqxAQUEBYmLufRQ5ERGVxEKaiKgGKMi7jYM/rQYA9Bw1Di6Ksj+e9Rc0sBSYIHdXQBXhW+1jHz16FDExMdDpdPD09MTq1avRunXravdLRFTbVXqM9M6dOxEfH4/Q0FDIZDKsWbOmxHYhBKZNm4aQkBC4ubkhNjYWZ86cKdEmNzcXCQkJ8Pb2hq+vL55++mnk5+dX640QETmzvauWwajXIbhZJJp361Fu2+LZOtStAiBzqf5sHS1atEBGRgb27duHF154AYmJicjMzKx2v0REtV2lC+mCggK0b98e8+bNK3X7e++9h08++QRffPEF9u3bBw8PD8TFxUGn01nbJCQk4Pjx49iyZQvWrVuHnTt34rnnnqv6uyAicmJ52ddw5Je7M2X0Gj2+3KnshEWg6PjvwzqqMVvHnymVSjRr1gydOnXCrFmz0L59e3z88cc26ZuIqDar9NCOgQMHYuDAgaVuE0Lgo48+whtvvIEhQ+7ebf7dd98hKCgIa9aswahRo3DixAls3LgRBw4cQOfOnQEAn376KR555BG8//77CA0NrcbbISJyPruX/Q8WsxnhHTqhUdt25bY1XL4Di9YAmcoF6qa+dsljsVig1+vt0jcRUW1i0zHSWVlZyM7ORmxsrHWdj48PunXrhrS0NIwaNQppaWnw9fW1FtEAEBsbC7lcjn379uGxxx67p1+9Xl/iQ12r1doyNhGRzRWZipClybpvO83Fyzi1Zycgk6HBI72Qeav8IRWqAwVQATBEuOCE9mS1c859ey56PdwLIQ1DUJBfgPU/rMf27dvx1Yqv7pvFUSJ8IuCmcJM6BhHRPWxaSGdnZwMAgoKCSqwPCgqybsvOzkZgYMnH3SoUCvj7+1vb/NWsWbMwY8YMW0YlIrKrLE0Wnlj3xH3b9dsfiAZww7mQO1iU8SqQUU5jASw8NwMhqI/37szD7nW/Vjvn5UOXsfj7xTBpTJC7yaEOU6PxPxrj4/yP8fG6mjG8Y9ngZWgdwJsfiajmcYpZO6ZOnYrJkydbl7VaLcLCwiRMRERUvgifCCwbvKzcNjdPnsGBDQsgc3HB355/BxPr+ZfbXn7dBM+TGggF8NLjU/CS0gaPBR9c/S7sLcInQuoIRESlsmkhHRwcDADIyclBSEiIdX1OTg46dOhgbXP9+vUS+5lMJuTm5lr3/yuVSgWVSmXLqEREduWmcCv3KqqwWLBk3VcAgA79H0HnFj3v26cm/QLuQAO3yACEhfAKLRGR1Gz6iPCIiAgEBwdj69at1nVarRb79u2zTu4fExODvLw8pKenW9ts27YNFosF3bp1s2UcIqIa69Te3cg5fxZKNzc8MGxUhfaxztZhw4ewEBFR1VX6inR+fj7Onj1rXc7KykJGRgb8/f3RqFEjTJo0Ce+88w6aN2+OiIgIvPnmmwgNDcXQoUMBAK1atcKAAQPw7LPP4osvvoDRaMTEiRMxatQozthBRHWC2WREavL/AACd44fB3dvnvvsYbxTClFMIyGVwa8VCmoioJqh0IX3w4EH06dPHulw8djkxMRGLFi3Ca6+9hoKCAjz33HPIy8tDz549sXHjRqjVaus+S5YswcSJE/Hwww9DLpdj+PDh+OSTT2zwdoiIar6jWzcjL+ca3H180WnQ0ArtU3Ts7tVoVTNfyN2c4vYWIqJaTyaEEFKHqCytVgsfHx9oNBp4e3tLHYeIqMIMuiJ88/KzKNTk4eG/vYAOcYMqtF/Op7/CeCUfvsOawbNryP13IKqB+P1NtY1Nx0gTEVH50tetQaEmD77BIYh6OK5C+5hu62C8kg/IALfWHNZBRFRTsJAmInKQQq0GB35aBQDo8cRYuCgqNkSjeFiHMtwbLp5Ku+UjIqLKYSFNROQge1clw6grQlCTZmjxwP2nuytWdPwmAMCtbT17RSMioipgIU1E5AB5Odk4vPlnAECvMeMhk1fs49d8xwDDb1oAgFsbFtJERDUJC2kiIgfYs/x7WMwmNG4XjcZRHSq8X9HxW4AAXMO8oPDlg6mIiGoSFtJERHZ2/cJ5nNi9HQDQa3Ripfa1Dutow5sMiYhqGhbSRER2tmvpYgBAyx4PIahJswrvZyk0Qn9OA4Djo4mIaiIW0kREdnTx2GFcyEiH3MUFPUY+Wal9i07kAhYB12B3uNZzs1NCIiKqKhbSRER2IoTArqRFAIB2sQPhG1y5B6kUHeNsHURENRkLaSIiOzmzLxXZ587AVe2GmOGjKrWvRW+C7sxtACykiYhqKhbSRER2YDaZsDv5OwBA58FD4e7jW6n9dSdvAyYBRT03KILc7ZCQiIiqi4U0EZEdHEvZjNvXrsLN2wedBz9W6f3/PFuHTCazdTwiIrIBFtJERDZm1OmQtnIpACBm+Cgo3Sp3RVkYLdCdzAXAYR1ERDUZC2kiIhtL37AWBXm34RMUjHaxAyq9v+7MbQiDBS4+Srg29LRDQiIisgUW0kRENlSo1eDAjysBAD2eGAsXhWul+7DO1tGmHod1EBHVYCykiYhsaP+a5TAUFSEwvClaxvSq9P7CbLk7fzQ4rIOIqKZjIU1EZCOa6znI2LQeANBrTCJk8sp/xOrPayCKTJB7ukIZ7m3riEREZEMspImIbGTP8u9hNpnQqG17NG4XXaU+rMM6WgdAJuewDiKimoyFNBGRDdz4LQuZu7cDAHqNGV+lsc3CIlB0/BYADusgInIGLKSJiGxg19LFgBCIjOmF4KbNq9SH4TctLPlGyNQKqJr42DghERHZGgtpIqJqupR5FFm/HoTcxQU9n3iyyv1Yh3W08odMwY9nIqKajp/URETVIITAriWLAABRfePgF9Kgyv1wWAcRkXNhIU1EVA1n96fh2tlTUKhUiHl8dJX7MV7JhzlPD5mrHOpIX9sFJCIiu2EhTURURRazGbuSvwMAdB78GDx8/arcV9Gxu1ej1S39IXN1sUk+IiKyLxbSRERVdGz7Fty+ehluXt7oPHhYlfsRQvwxPrptgK3iERGRnbGQJiKqAqNehz0rkgAADwx7Aip39yr3ZbpeCNPNIsBFBnULf1tFJCIiO2MhTURUBYc2/IiC27nwrh+Edv0eqVZfRUfvXo1WN/eDXK2wRTwiInIAFtJERJVUdEeLAz/+AADo8cSTULi6Vq8/62wdHNZBRORMWEgTEVXSvjUroC8sQP3GEWjV46Fq9WW6VQTjtQJADqhbsZAmInIm/BsiEVElaG9eR8amdQB+fxS4vHrXI4pn61A18YWLR/WubBPVFmazGUajUeoYVAe5urrCxaXiMyexkCYiqoQ9y5NgNhoR1joK4e07Vrs/ztZB9AchBLKzs5GXlyd1FKrDfH19ERwcDJlMdt+2LKSJiCro5sULOL5zKwCgV8L4Cn3Ilsek0cNw6Q4gA9xa82mGRMVFdGBgINzd3av9b4yoMoQQKCwsxPXr1wEAISEh992HhTQRUQXtSv4OEAKR3XogpFmLaven+/1qtLKRN1y8ldXuj8iZmc1maxEdEMC/0JA03NzcAADXr19HYGDgfYd58GZDIqIKuHziGM6n74dMLkePUeNs0idn6yD6Q/GYaPdqzMlOZAvFP4MVGafPQpqI6D6EENiZtAgAENW3P/xDG1S7T3O+AfosDQDArQ2HdRAV43AOklplfgZZSBMR3ce5g/tw7fRJKFQqxDw+xiZ96jJzAQG4NvCEwl9tkz6JiMixWEgTEZXDYjZj19LFAIBOjwyBp59tHuFddPz32TracFgHEVWPTCbDmjVrpI5RJ7GQJiIqx/EdW5F75RLUnl7o8uhwm/RpKTJBdzYPAODWlsM6iJzZ+PHjMXToUKljlGvnzp2Ij49HaGgoi24bYyFNRFQGo0GPPSuWAAC6PTYSKncPm/SrO5kLmAUUgW5wDeSNVURkXwUFBWjfvj3mzZsndZRah4U0EVEZfv35J+Tn3oJXvfro0H+QzfottD6EhVejiWq7Y8eOYeDAgfD09ERQUBDGjh2LmzfvfgZ89dVXCA0NhcViKbHPkCFD8Le//c26vHbtWnTs2BFqtRpNmjTBjBkzYDKZKpxh4MCBeOedd/DYY4/Z5k2RFQtpIqJS6PLzsX/tCgBAj5FPQqG0zTzPFoMZ+tO3AXC2DqLaLi8vD3379kV0dDQOHjyIjRs3IicnByNHjgQAjBgxArdu3UJKSop1n9zcXGzcuBEJCQkAgF27dmHcuHF45ZVXkJmZiS+//BKLFi3CzJkzJXlPVBIfyEJEVIr9a1dAX1CAemGN0apXb5v1qzt1G8JogYu/Gq6hthkqQlSbFRnMOHcj36HHbFrfE27K8h/EURGfffYZoqOj8e6771rXLVy4EGFhYTh9+jQiIyMxcOBAJCUl4eGHHwYArFy5EvXq1UOfPn0AADNmzMDrr7+OxMREAECTJk3w9ttv47XXXsP06dOrnZGqh4U0EdFfaG/ewKGffwQA9BozHnJ59b9Qi/15tg7Ol0t0f+du5GPwp7sdesx1L/VE2wY+1e7n8OHDSElJgaen5z3bzp07h8jISCQkJODZZ5/F559/DpVKhSVLlmDUqFGQy+XWPlJTU0tcgTabzdDpdCgsLOQDbCTGQpqI6C/SVibBbDSiYau2iIjubLN+hckC3YlcABwfTVRRTet7Yt1LPR1+TFvIz89HfHw85syZc8+2kJAQAEB8fDyEEFi/fj26dOmCXbt2Ye7cuSX6mDFjBoYNG3ZPH2o156CXGgtpIqI/uXX5Io5v3wrg7tVoW1411p3Ng9CbIfdSQhnmZbN+iWozN6WLTa4OS6Fjx4744YcfEB4eDoWi9JJLrVZj2LBhWLJkCc6ePYsWLVqgY8eOJfo4deoUmjVr5qjYVAk2v9nQbDbjzTffREREBNzc3NC0aVO8/fbbEEJY2wghMG3aNISEhMDNzQ2xsbE4c+aMraMQEVXarqXfQQgLmnWJQWhkS5v2XXTsT8M65BzWQVRbaDQaZGRklHhdunQJEyZMQG5uLkaPHo0DBw7g3Llz2LRpE5566imYzWbr/gkJCVi/fj0WLlxovcmw2LRp0/Ddd99hxowZOH78OE6cOIHk5GS88cYbFc6Xn59vzQUAWVlZyMjIwMWLF23y/usymxfSc+bMwfz58/HZZ5/hxIkTmDNnDt577z18+umn1jbvvfcePvnkE3zxxRfYt28fPDw8EBcXB51OZ+s4REQVduVkJs4d3AuZTI6eo8fZtG9hFtBl3gLAYR1Etc327dsRHR1d4jVjxgyEhoYiNTUVZrMZ/fv3R1RUFCZNmgRfX1/rGGgA6Nu3L/z9/XHq1CmMGTOmRN9xcXFYt24dNm/ejC5duuCBBx7A3Llz0bhx4wrnO3jwoDUXAEyePBnR0dGYNm2abU5AHSYTf75UbAODBw9GUFAQvvnmG+u64cOHw83NDd9//z2EEAgNDcU//vEP/N///R+Au7/JBQUFYdGiRRg1atR9j6HVauHj4wONRgNvb29bxieiOkoIgWX/mYIrJzMR1bc/+v/9ZZv2rzuXh5sLjkLurkDIvx+AzIVXpKnuKe/7W6fTISsrCxERERz7S5KqzM+iza9Id+/eHVu3bsXp06cB3L3bdPfu3Rg4cCCAu39OyM7ORmxsrHUfHx8fdOvWDWlpaaX2qdfrodVqS7yIiGzp/KH9uHIyEwpXJWJGjLn/DpVUPKxD3TqARTQRUS1h85sNX3/9dWi1WrRs2RIuLi4wm82YOXOmdcxPdnY2ACAoKKjEfkFBQdZtfzVr1izMmDHD1lGJiAAAFosZu5IWAwA6PvIovPxtO/RCWASKjnNYBxFRbWPzK9LLly/HkiVLkJSUhEOHDmHx4sV4//33sXjx4ir3OXXqVGg0Guvr0qVLNkxMRHVd5s4U3Lp8EWoPT3QZ8rjN+zdcugOL1gCZygXqZr4275+IiKRh8yvS//znP/H6669bxzpHRUXht99+w6xZs5CYmIjg4GAAQE5OjnUOxeLlDh06lNqnSqWCSqWydVQiIpgMBuxZvgQA0PWxkVB72Gb+2D8rfgiLuqU/ZAqbX78gIiKJ2PwTvbCwsMSdqADg4uICi8UCAIiIiEBwcDC2bt1q3a7VarFv3z7ExMTYOg4RUbkyNq3DnVs34BVQH9Fxg23evxACRcc4rIOIqDay+RXp+Ph4zJw5E40aNUKbNm3w66+/4sMPP8Tf/vY3AIBMJsOkSZPwzjvvoHnz5oiIiMCbb76J0NBQDB061NZxiIjKpCvIx77VywEA3UeMgUKptPkxjNcKYM7VAQo51C38bN4/ERFJx+aF9Keffoo333wTL774Iq5fv47Q0FD8/e9/LzFX4WuvvYaCggI899xzyMvLQ8+ePbFx40ZOd0NEDnVg7UroCvIR0LARWj/U1y7HsM7WEekHudLFLscgIiJp2LyQ9vLywkcffYSPPvqozDYymQxvvfUW3nrrLVsfnoioQu7k3sShn38CAPQakwi53D5FrnVYRxSHdRAR1Ta864WI6qS0lUthMugR2qI1mnTsapdjGK8XwnS9EHCRwa2lv12OQURE0mEhTUR1zq0rl3Bs2xYAwINjxkMms88DUopn61A19YXczeZ/ACQiAnD3L/1r1qyROkadxEKaiOqc1OT/QQgLmnbuhgYtW9vtOH/M1hFgt2MQkbTGjx9f4ydLmDVrFrp06QIvLy8EBgZi6NChOHXqlNSxagUW0kRUp1w9fRJn9u+BTCZHz1Hj7HYcU64Oxiv5gAxwa81Cmoiks2PHDkyYMAF79+7Fli1bYDQa0b9/fxQUFEgdzemxkCaiOkMIgV1JiwAAbXo/jHphje12rOJHgivDfeDiaftp9YjIORw7dgwDBw6Ep6cngoKCMHbsWNy8eXfY11dffYXQ0FDrszaKDRkyxDptMACsXbsWHTt2hFqtRpMmTTBjxgyYTKYKZ9i4cSPGjx+PNm3aoH379li0aBEuXryI9PR027zJOoyFNBHVGVkZB3H5xDG4uLoi5vExdj1W8bR37hzWQVRn5eXloW/fvoiOjsbBgwexceNG5OTkYOTIkQCAESNG4NatW0hJSbHuk5ubi40bNyIhIQEAsGvXLowbNw6vvPIKMjMz8eWXX2LRokWYOXNmlXNpNBoAgL8/b4KuLt79QkR1gsVixq6kxQCA6AHx8K5X327HMmsNMFzUAgDUbTjtHVG1GAqBm6cde8x6kYDSvdrdfPbZZ4iOjsa7775rXbdw4UKEhYXh9OnTiIyMxMCBA5GUlISHH34YALBy5UrUq1cPffr0AQDMmDEDr7/+OhITEwEATZo0wdtvv43XXnsN06dPr3Qmi8WCSZMmoUePHmjbtm2132Ndx0KaiOqEE7u24+bFC1B5eKDr0BF2PVZR5k1AAK5hXlD4qux6LKJa7+Zp4KuHHHvM53YAoR2q3c3hw4eRkpICT0/Pe7adO3cOkZGRSEhIwLPPPovPP/8cKpUKS5YswahRoyCXy619pKamlrgCbTabodPpUFhYCHf3yhX8EyZMwLFjx7B79+7qvTkCwEKaiOoAk8GA1OXfAwC6DhkBN08vux6veLYODusgsoF6kXcLW0cf0wby8/MRHx+POXPm3LMtJCQEABAfHw8hBNavX48uXbpg165dmDt3bok+ZsyYgWHDht3TR2WfCD1x4kSsW7cOO3fuRMOGDSv5bqg0LKSJqNY7vGUD7ty8AU//AEQPjLfrsSyFRujP5wEA3Disg6j6lO42uToshY4dO+KHH35AeHg4FIrSSy61Wo1hw4ZhyZIlOHv2LFq0aIGOHTuW6OPUqVNo1qxZlXMIIfDSSy9h9erV2L59OyIiIqrcF5XEQpqIajV9YQH2rloGAOg+IgGuSvsOtSjKzAUsgGuwBxT13Ox6LCKqGTQaDTIyMkqsCwgIwIQJE7BgwQKMHj0ar732Gvz9/XH27FkkJyfj66+/houLCwAgISEBgwcPxvHjx/Hkk0+W6GfatGkYPHgwGjVqhMcffxxyuRyHDx/GsWPH8M4771Qo34QJE5CUlIS1a9fCy8sL2dnZAAAfHx+4ufFzqjo4awcR1WoHflwFXf4d+Ic2RJuHHrb78YqfZsiHsBDVHdu3b0d0dHSJ14wZMxAaGorU1FSYzWb0798fUVFRmDRpEnx9fa1joAGgb9++8Pf3x6lTpzBmTMkZheLi4rBu3Tps3rwZXbp0wQMPPIC5c+eiceOKT985f/58aDQa9O7dGyEhIdbXsmXLbHYO6ipekSaiWiv/di7S168BAPQckwj571d/7MWiN0F35jYAwK0th3UQ1QWLFi3CokWLytzevHlzrFq1qtw+5HI5rl69Wub2uLg4xMXFlbldCFFu//fbTlXHK9JEVGulrUyCyaBHSGRLNOv8gN2Ppzt5GzAJKOq5QRFU/amziIioZmMhTUS1Uu7VKzi6bTMA4MEx4yGTyex+zOKHsLi1DXDI8YiISFospImoVkpN/g7CYkGTjl3QsJX9HzogjGboTuUC4GwdRER1BQtpIqp1rp09hdP7UgGZDL1GJzrkmLrTeRAGC1x8VHBteO/DF4iIqPZhIU1EtYoQAruWLAIAtHmwL+o1CnfIcf88WweHdRAR1Q0spImoVrlw+BAuZR6Fi6sruo9McMgxhclyd/5ocFgHEVFdwkKaiGoNYbFgV9IiAECHuMHwrhfokOPqz2sgdCbIPV2hDPd2yDGJiEh6LKSJqNY4mboDN37LgtLNHd2GjnDYca3DOloHQCbnsA4iorqChTQR1QomoxG7l30PAOg65HG4eTnmyrCwCBQdvwWAD2EhIqprWEgTUa1w5Jefob2RAw8/f3R85FGHHdfwmxaWfCNkagVUTXwcdlwiomIymQxr1qyROkadxEKaiJyevrAQe39IBgB0f3wMXFVqhx3b+hCW1v6QKfiRSlTXjB8/HkOHDpU6Rrnmz5+Pdu3awdvbG97e3oiJicHPP/8sdaxagZ/6ROT0Dq5bhaI7WviFNEDbPv0cdlwhBIqO/T6sg7N1EFEN1bBhQ8yePRvp6ek4ePAg+vbtiyFDhuD48eNSR3N6LKSJyKkV5N1G+ro1AICeo8dB7uLisGMbL+fDrNFDppRDHenrsOMSkfM4duwYBg4cCE9PTwQFBWHs2LG4efPuX7K++uorhIaGwmKxlNhnyJAh+Nvf/mZdXrt2LTp27Ai1Wo0mTZpgxowZMJlMFc4QHx+PRx55BM2bN0dkZCRmzpwJT09P7N271zZvsg5jIU1ETi3th2QY9ToEN4tE867dHXrs4tk61C38IXN1XAFPRM4hLy8Pffv2RXR0NA4ePIiNGzciJycHI0eOBACMGDECt27dQkpKinWf3NxcbNy4EQkJd+fB37VrF8aNG4dXXnkFmZmZ+PLLL7Fo0SLMnDmzSpnMZjOSk5NRUFCAmJiY6r/JOk4hdQAioqq6nX0VR7duBAA8mPCUQ58oWGJYB2frILKbIlMRsjRZDj1mhE8E3BRu1e7ns88+Q3R0NN59913ruoULFyIsLAynT59GZGQkBg4ciKSkJDz88MMAgJUrV6JevXro06cPAGDGjBl4/fXXkZiYCABo0qQJ3n77bbz22muYPn16hbMcPXoUMTEx0Ol08PT0xOrVq9G6detqv8e6joU0ETmt1OT/wWI2I6JDJ4S1jnLosU05hTDdLAJcZFC39HPosYnqkixNFp5Y94RDj7ls8DK0Dqh+kXn48GGkpKTA09Pznm3nzp1DZGQkEhIS8Oyzz+Lzzz+HSqXCkiVLMGrUKMjlcmsfqampJa5Am81m6HQ6FBYWwt3dvUJZWrRogYyMDGg0GqxcuRKJiYnYsWMHi+lqYiFNRE4p+9wZnErbBchk6Dk60eHHL56tQ93cD3IVP0qJ7CXCJwLLBi9z+DFtIT8/H/Hx8ZgzZ84920JCQgDcHb8shMD69evRpUsX7Nq1C3Pnzi3Rx4wZMzBs2LB7+lCrKz5DkVKpRLNmzQAAnTp1woEDB/Dxxx/jyy+/rOzboj/hpz8ROaXiR4G37tkbgeFNHH58Dusgcgw3hZtNrg5LoWPHjvjhhx8QHh4OhaL0kkutVmPYsGFYsmQJzp49ixYtWqBjx44l+jh16pS1CLYVi8UCvV5v0z7rIhbSROR0Lhz5FRePHYaLQoHuI590+PFNN4tgzC4A5IC6lb/Dj09ENYtGo0FGRkaJdQEBAZgwYQIWLFiA0aNH47XXXoO/vz/Onj2L5ORkfP3113D5fZahhIQEDB48GMePH8eTT5b8TJs2bRoGDx6MRo0a4fHHH4dcLsfhw4dx7NgxvPPOOxXKN3XqVAwcOBCNGjXCnTt3kJSUhO3bt2PTpk02ef91GQtpInIqwmLBriWLAADt+w+CT2CQwzMUz9ahauILFw9Xhx+fiGqW7du3Izo6usS6p59+Gl9//TVSU1MxZcoU9O/fH3q9Ho0bN8aAAQOsY6ABoG/fvvD398epU6cwZsyYEv3ExcVh3bp1eOuttzBnzhy4urqiZcuWeOaZZyqc7/r16xg3bhyuXbsGHx8ftGvXDps2bUK/fo6bd7+2kgkhhNQhKkur1cLHxwcajQbe3t5SxyEiBzqRugMbPvkvlG5uePqTr+Hu7fjHcl+flwHDpTvwHdoUng+EOvz4RM6qvO9vnU6HrKwsREREVGrsL5GtVeZnkfNIE5HTMJuMSF32PwBAl/jhkhTRJo0ehkt3ABng1prjo4mI6jIW0kTkNI78shGanGy4+/ii06ChkmTQ/T5bh7KRN1y8lZJkICKimoGFNBE5BUNRIfauujsFVvcRY+Aq0Z9+CzlbBxER/Y6FNBE5hYPr1qBQkwe/kFC07dNfkgzmfAMMFzQAALc2AZJkICKimoOFNBHVeIWaPBxctxoA0OOJcXApYz5WeyvKvAUIwLWBJxT+vBmKiKiuYyFNRDXe3lXLYNQVIbhpc0Q+0EOyHH88hIVXo4mIiIU0EdVwednXcHjLzwCAXmPGQyaTSZLDUmSC/lweAMCtDcdHExERC2kiquFSl38Pi9mE8PYd0ahte8lyFJ3MBcwCikB3uAa6S5aDiIhqDhbSRFRj5WSdw8nUHQDuXo2WUtHv095xWAcRERVjIU1ENdaupEUAgJY9HkJgeBPJclgMZuhP3wbAae+IiOgPLKSJqEb67WgGfjvyK+QuCvR4YqykWXSnbkMYLXDxV8M1xEPSLERUs4wff/feDZlMBldXVwQFBaFfv35YuHAhLBZLufseP34cw4cPR3h4OGQyGT766CO759XpdBg/fjyioqKgUCgwdOjQCu136NAh9OvXD76+vggICMBzzz2H/Pz8Em0OHDiAhx9+GL6+vvDz80NcXBwOHz5sh3fxh4sXL2LQoEFwd3dHYGAg/vnPf8JkMlm3X7t2DWPGjEFkZCTkcjkmTZpk0+PbpZC+cuUKnnzySQQEBMDNzQ1RUVE4ePCgdbsQAtOmTUNISAjc3NwQGxuLM2fO2CMKETkhYbFYr0a37zcQvkHBkub587AOqW52JKKaa8CAAbh27RouXLiAn3/+GX369MErr7yCwYMHlyjq/qqwsBBNmjTB7NmzERzsmM85s9kMNzc3vPzyy4iNja3QPlevXkVsbCyaNWuGffv2YePGjTh+/DjGjx9vbZOfn48BAwagUaNG2LdvH3bv3g0vLy/ExcXBaDRWOW94eDi2b99e5nsZNGgQDAYD9uzZg8WLF2PRokWYNm2atY1er0f9+vXxxhtvoH17O9xnI2wsNzdXNG7cWIwfP17s27dPnD9/XmzatEmcPXvW2mb27NnCx8dHrFmzRhw+fFg8+uijIiIiQhQVFVXoGBqNRgAQGo3G1vGJqAY4uWeneH/kIPHxuMdFQd5tSbNYjGZxeVqquDRlp9Bd4GcOUXWU9/1dVFQkMjMzK1wL1BSJiYliyJAh96zfunWrACAWLFhQoX4aN24s5s6da9tw91FW9r/68ssvRWBgoDCbzdZ1R44cEQDEmTNnhBBCHDhwQAAQFy9eLLONEELs2rVL9OzZU6jVatGwYUPx0ksvifz8/DKP3bhxY5GSklLqtg0bNgi5XC6ys7Ot6+bPny+8vb2FXq+/p/1DDz0kXnnllfu+38r8LNr8ivScOXMQFhaGb7/9Fl27dkVERAT69++Ppk2bFhfu+Oijj/DGG29gyJAhaNeuHb777jtcvXoVa9assXUcInIyZpMJu5O/AwB0iR8Gdx9fSfPozuZB6M2QeyuhDPOSNAtRXWUpLCz7pddXvK1Od9+2ttK3b1+0b98eq1atslmfwN2hDJ6enuW+3n33XZseU6/XQ6lUQi7/o2x0c3MDAOzevRsA0KJFCwQEBOCbb76BwWBAUVERvvnmG7Rq1Qrh4eEAgHPnzmHAgAEYPnw4jhw5gmXLlmH37t2YOHFilXKlpaUhKioKQUFB1nVxcXHQarU4fvx4Fd9t5dj88WA//vgj4uLiMGLECOzYsQMNGjTAiy++iGeffRYAkJWVhezs7BJ/TvDx8UG3bt2QlpaGUaNG3dOnXq+H/k//ULRara1jE1ENcXTbZuRlX4O7jy86DR4qdZw/hnW0CYBMzmEdRFI41bFTmds8HnoQjb780rp8ukdPiKKiUtu6d+mCxv/7zrp89uFYmG/fLtGm1ckT1Uz7h5YtW+LIkSM26w8AQkNDkZGRUW4bf39/mx6zb9++mDx5Mv773//ilVdeQUFBAV5//XUAd8cgA4CXlxe2b9+OoUOH4u233wYANG/eHJs2bYLi96fRzpo1CwkJCdZxys2bN8cnn3yChx56CPPnz4daXbknxmZnZ5coogFYl7Ozs6v8fivD5lekz58/j/nz51tP3gsvvICXX34ZixcvBvDHGyvtjZf1pmfNmgUfHx/rKywszNaxiagGMOiKkLYyCQDwwPBRUKrdJM0jzAK6zN+fZsiHsBBRJQkhbH5fhUKhQLNmzcp92bqQbtOmDRYvXowPPvgA7u7uCA4ORkREBIKCgqxXqYuKivD000+jR48e2Lt3L1JTU9G2bVsMGjQIRb//YnP48GEsWrSoxNXzuLg4WCwWZGVlAQCef/75EtsvXryIgQMHllhXk9j8irTFYkHnzp2tf1aIjo7GsWPH8MUXXyAxMbFKfU6dOhWTJ0+2Lmu1WhbTRLVQ+vo1KNTkwTcoBO0ejpM6DvRZGlgKTZC7K6CK8JE6DlGd1eJQetkbXVxKLEam7i67rbzk9cNmW3+pTqz7OnHiBCIiImza58WLF9G6dety2/zrX//Cv/71L5sed8yYMRgzZgxycnLg4eEBmUyGDz/8EE2a3J2aNCkpCRcuXEBaWpq1uE5KSoKfnx/Wrl2LUaNGIT8/H3//+9/x8ssv39N/o0aNAABvvfUW/u///s+6vnfv3pgzZw66det2zz7BwcHYv39/iXU5OTnWbY5g80I6JCTknv/BrVq1wg8//ADgjzeWk5ODkJAQa5ucnBx06NCh1D5VKhVUKpWtoxJRDVKo1eDgT3fHEvZ44km4KFwlTgQUHb87rEPdOgAyFw7rIJKK3L3iTxO1V9vK2rZtG44ePYpXX33Vpv1KMbTjz4pHFCxcuBBqtRr9+vUDcHcGErlcXuIKfPFy8TSAHTt2RGZmJpo1a1Zm/4GBgQgMDLQuKxQKNGjQoNR9YmJiMHPmTFy/ft26z5YtW+Dt7X3fXzZsxeaFdI8ePXDq1KkS606fPo3GjRsDACIiIhAcHIytW7daC2etVot9+/bhhRdesHUcInIS+1Ytg6GoCIERTdEippfUcSAsAkXHfh/WwYewEFE59Ho9srOzYTabkZOTg40bN2LWrFkYPHgwxo0bV+Z+BoMBmZmZ1v++cuUKMjIy4OnpWWaxWTy0ozoyMzNhMBiQm5uLO3fuWAvz4rps//79GDduHLZu3YoGDRoAAD777DN0794dnp6e2LJlC/75z39i9uzZ8PX1BQD069cP//znPzFhwgS89NJLsFgsmD17NhQKBfr06QMAmDJlCh544AFMnDgRzzzzDDw8PJCZmYktW7bgs88+q/T76N+/P1q3bo2xY8fivffeQ3Z2Nt544w1MmDChxAXY4veXn5+PGzduICMjA0ql0jbF9n3n9aik/fv3C4VCIWbOnCnOnDkjlixZItzd3cX3339vbTN79mzh6+sr1q5dK44cOSKGDBnC6e+I6rC8nGviw9FDxPsjB4kLh3+VOo4QQgjdBY24NGWnuDwtVViM5vvvQET3VVunvwMgAAiFQiHq168vYmNjxcKFC0tMF1earKws675/fj300EN2zdy4ceNSj1ssJSVFABBZWVnWdWPHjhX+/v5CqVSKdu3aie++++6efjdv3ix69OghfHx8hJ+fn+jbt69IS0sr0Wb//v2iX79+wtPTU3h4eIh27dqJmTNnlpu1rOnvhBDiwoULYuDAgcLNzU3Uq1dP/OMf/xBGo7FEm9Lea+PGjcvsszI/i7LfD2BT69atw9SpU3HmzBlERERg8uTJ1lk7fi/eMX36dHz11VfIy8tDz5498fnnnyMyMrJC/Wu1Wvj4+ECj0cDb29vW8YnIwTZ89gFO7EpBo6gOGPHGO1LHAQDkrT+P/F1X4NahPgJGtZQ6DlGtUN73t06nQ1ZWFiIiIio9ewORLVXmZ9HmQzsAYPDgwRg8eHCZ22UyGd566y289dZb9jg8ETmR6xfO48Tu7QCAB8eMlzRLMSEEio5ztg4iIiqfXR4RTkRUUbuXLgaEQIvuDyKoSfXG/dmK8WoBzLk6yFzlULfwkzoOERHVUCykiUgyF48dQVZGOuQuLujxxJNSx7Eqnq1DFekHudLlPq2JiKiuYiFNRJIQQmDX0kUAgHaxA+AXHCptoD+xPs2Qs3UQEVE5WEgTkSTO7N+D7LOn4apS44Fho6SOY2W8XgjT9SLARQa3lvabi5WIiJwfC2kicjizyYTdS78DAHQa/Bg8fGvOOOTiq9Gqpr6Qu9nlfmwiIqolWEgTkcMdS9mC29euwM3bB50HPyZ1nBKKZ+tw57AOIiK6DxbSRORQRp0OaT8sBQA8MGwUVHZ8RG9lmXJ1MF7JB2SAujWHdRARUflYSBORQx36+UcU3M6FT2AQ2vcbIHWcEqyzdUT4wMVTKXEaIiKq6VhIE5HDFN3RYv/alQCAHk+MhYvCVeJEJRUdK34IS4DESYiIyBmwkCYih9m3ejkMRYWoH94ELbs/KHWcEsxaAwwXtQAANcdHE1EFjR8/HjKZDDKZDK6urggKCkK/fv2wcOFCWCyWcvddsGABevXqBT8/P/j5+SE2Nhb79++3a95Vq1ahX79+qF+/Pry9vRETE4NNmzbdd78jR46gV69eUKvVCAsLw3vvvXdPmxUrVqBly5ZQq9WIiorChg0b7PEWSpg3bx7Cw8OhVqvRrVu3e87fV199hd69e8Pb2xsymQx5eXk2PT4LaSJyCO2N68jYtA4A8ODoRMjkNevjpyjzJiAAZZgXFD4qqeMQkRMZMGAArl27hgsXLuDnn39Gnz598Morr2Dw4MEwmUxl7rd9+3aMHj0aKSkpSEtLQ1hYGPr3748rV67YLevOnTvRr18/bNiwAenp6ejTpw/i4+Px66+/lrmPVqtF//790bhxY6Snp+O///0v/vOf/+Crr76yttmzZw9Gjx6Np59+Gr/++iuGDh2KoUOH4tixY1XOumjRIvTu3bvM7cuWLcPkyZMxffp0HDp0CO3bt0dcXByuX79ubVNYWIgBAwbgX//6V5VzlEs4IY1GIwAIjUYjdRQiqqANn30g3h85SCx/a6qwWCxSx7nH9QVHxKUpO4V2+yWpoxDVWuV9fxcVFYnMzExRVFQkQbKqS0xMFEOGDLln/datWwUAsWDBggr3ZTKZhJeXl1i8eLENE95f69atxYwZM8rc/vnnnws/Pz+h1+ut66ZMmSJatGhhXR45cqQYNGhQif26desm/v73v1uXdTqd+Mc//iFCQ0OFu7u76Nq1q0hJSSnzuN9++6146KGHytzetWtXMWHCBOuy2WwWoaGhYtasWfe0TUlJEQDE7du3y+yvWGV+FmvWJSEiqpVuXLyAzF0pAIBeo+/+GbQmMRcYoT+fB4Djo4lqIqPeXObLZDRXvK3h/m1tpW/fvmjfvj1WrVpV4X0KCwthNBrh71/2rEG7du2Cp6dnua8lS5ZU+JgWiwV37twp95hpaWl48MEHoVT+cRN2XFwcTp06hdu3b1vbxMbGltgvLi4OaWlp1uWJEyciLS0NycnJOHLkCEaMGIEBAwbgzJkzFc5bzGAwID09vcQx5XI5YmNjSxzT3vi0ASKyu91LFwNCIPKBnghuFil1nHvoTtwCLIBrsAcU9dykjkNEf/HVKzvK3Na4bQAGT2xvXV74z10wGUofmxza3BeP/aOjdfm7f++BLt9Yos2EL/pWM+0fWrZsiSNHjlS4/ZQpUxAaGnpPQfpnnTt3RkZGRrn9BAUFVfiY77//PvLz8zFy5Mgy22RnZyMiIqLUY2RnZ8PPzw/Z2dn3HDcoKAjZ2dkAgIsXL+Lbb7/FxYsXERoaCgD4v//7P2zcuBHffvst3n333QpnBoCbN2/CbDaXesyTJ09Wqq/qYCFNRHZ1OfMYzh86AJlcjp6jxkodp1TW2Tra8mo0EdmOEKLCf4GbPXs2kpOTsX37dqjV6jLbubm5oVmzZjbJl5SUhBkzZmDt2rUIDAy0SZ9lOXr0KMxmMyIjS15M0ev1CAi4+9l78eJFtG7d2rrNZDLBaDTC09PTuu5f//qX/cY7VwELaSKyGyEEdiZ9CwBo93Ac/EIaSJzoXhadCbozd/806cbZOohqpOc+fqjMbbK/DFL92397ld32LzXtuJndqxPrvk6cOHHPldzSvP/++5g9ezZ++eUXtGvXrty2u3btwsCBA8tt8+WXXyIhIaHcNsnJyXjmmWewYsWKcq+AA0BwcDBycnJKrCteDg4OLrdN8fb8/Hy4uLggPT0dLi4uJdoVF8qhoaElrravWrUKP/zwQ4mhKsVDUOrVqwcXF5dyj+kILKSJyG7OHkjDtTOnoFCp8MDw0VLHKZXuVC5gFlDUc4MiqOY8ZZGI/uCqcrl/Izu3raxt27bh6NGjePXVV8tt995772HmzJnYtGkTOnfufN9+bTG0Y+nSpfjb3/6G5ORkDBo06L7HjImJwb///W8YjUa4ut6d/3/Lli1o0aIF/Pz8rG22bt2KSZMmWffbsmULYmJiAADR0dEwm824fv06evUq/ZcdhUJR4mp7YGBgmVfglUolOnXqhK1bt2Lo0KEA7o733rp1KyZOnHjf92QrLKSJyC4sZjN2Lf0OANB50FB4+tXMR27/eVhHTbsJkoicg16vR3Z2NsxmM3JycrBx40bMmjULgwcPxrhx48rcb86cOZg2bRqSkpIQHh5uHU9cfNNgaao7tCMpKQmJiYn4+OOP0a1bN+sx3dzc4OPjAwD47LPPsHr1amzduhUAMGbMGMyYMQNPP/00pkyZgmPHjuHjjz/G3Llzrf2+8soreOihh/DBBx9g0KBBSE5OxsGDB61T5EVGRiIhIQHjxo3DBx98gOjoaNy4cQNbt25Fu3btKlTQ/9XkyZORmJiIzp07o2vXrvjoo49QUFCAp556ytomOzsb2dnZOHv2LIC7Q0y8vLzQqFGjcm+wrLD7zutRA3H6O6Ka7/AvG8X7IweJz54eLXQFBVLHKZXFYBKX39wtLk3ZKfSXtFLHIar1auv0dwAEAKFQKET9+vVFbGysWLhwoTCbzeXu27hxY+u+f35Nnz7dbnkfeuihUo+ZmJhobTN9+nTRuHHjEvsdPnxY9OzZU6hUKtGgQQMxe/bse/pevny5iIyMFEqlUrRp00asX7++xHaDwSCmTZsmwsPDhaurqwgJCRGPPfaYOHLkSKlZ7zf9nRBCfPrpp6JRo0ZCqVSKrl27ir1795bYPn369FLf77fffltmn5X5WZQJIUT1y3HH0mq18PHxgUajgbe3t9RxiOgvjHodFr7yHPJv56L3uGfRadAQqSOVquj4Ldz6XyZcfFUIntKFV6SJ7Ky872+dToesrCxERESUe7Mdkb1V5meR80gTkc0d+vkn5N/OhXf9QLTv/4jUccpUdOwmgLtzR7OIJiKiymIhTUQ2VZR/BwfWrgQA9Bj5JBS/35hS0wiTBUUncgFwtg4iIqoaFtJEZFP716yAvrAA9RuFo2XPsqeskpr+vAZCZ4Lc0xXKxhwiRkRElcdCmohsRnvzBn7d+BMAoNeY8ZDL7Te1VHWVGNYh57AOIiKqPBbSRGQze1YsgdloRMPWbRHeoZPUccokLAJFmb9Pe9eGwzqIiKhqWEgTkU3cvPQbMndsAwA8OOapGn3znuGCFpZ8I2RqBVRNfaSOQ0REToqFNBHZxO7k7yCEBc27dUdI8xZSxymXdVhHa3/IXPgxSEREVcNvECKqtssnj+PcwX2QyeXoOarsp3jVBEIIFB3/vZDmbB1ERFQNLKSJqFqEENi1ZBEAIKpPf/iHNpQ20H0YL+fDrDFAppRD3dxX6jhEROTEWEgTUbWcS9+Pq6dPQKFUIebx0VLHua/iYR3qlv6QudbcWUWIiKjmYyFNRFVmMZuxe+liAEDHRx6Fp3+AxInKJ4T407R3HNZBRNU3fvx4DB06VOoY93X8+HEMHz4c4eHhkMlk+Oijj6SOVCuwkCaiKju+cytuXb4ItacXujw6XOo492XKKYTplg5QyKBu6Sd1HCIimzMYDKWuLywsRJMmTTB79mwEBwc7OFXtxUKaiKrEaNBjz4okAEC3oSOg9vCUONH9WYd1NPeDXKWQOA0R1QUffvghoqKi4OHhgbCwMLz44ovIz8+3bv/tt98QHx8PPz8/eHh4oE2bNtiwYYN1+7FjxzBw4EB4enoiKCgIY8eOxc2bN63be/fujYkTJ2LSpEmoV68e4uLiSs3RpUsX/Pe//8WoUaOgUqns94brGH6TEFGVZGxch/xbN+EVUB8d4gZLHadCOKyDyLkIIWDS6x1+XIVKZbO58OVyOT755BNERETg/PnzePHFF/Haa6/h888/BwBMmDABBoMBO3fuhIeHBzIzM+HpeffCRF5eHvr27YtnnnkGc+fORVFREaZMmYKRI0di27Zt1mMsXrwYL7zwAlJTU22SmSqOhTQRVZouPx/71iwHAPR44kkolEqJE92f8WYRjNmFgPzu/NFEVPOZ9Hp8kvi4w4/78uKVcFWrbdLXpEmTrP8dHh6Od955B88//7y1kL548SKGDx+OqKgoAECTJk2s7T/77DNER0fj3Xffta5buHAhwsLCcPr0aURGRgIAmjdvjvfee88mealyWEgTUaXt/3El9AUFqBfWGK169ZY6ToUUX41WNfGF3N1V4jREVFf88ssvmDVrFk6ePAmtVguTyQSdTofCwkK4u7vj5ZdfxgsvvIDNmzcjNjYWw4cPR7t27QAAhw8fRkpKivUK9Z+dO3fOWkh36tTJoe+J/sBCmogq5c6tm/h1w48AgJ6jEyGXO8cUckXHbwHgQ1iInIlCpcLLi1dKclxbuHDhAgYPHowXXngBM2fOhL+/P3bv3o2nn34aBoMB7u7ueOaZZxAXF4f169dj8+bNmDVrFj744AO89NJLyM/PR3x8PObMmXNP3yEhIdb/9vDwsEleqjwW0kRUKXtWJMFkNKBByzZo0rGL1HEqxJSnh/HSHUAGuLWp2VP0EdEfZDKZzYZYSCE9PR0WiwUffPAB5PK78zssX778nnZhYWF4/vnn8fzzz2Pq1KlYsGABXnrpJXTs2BE//PADwsPDoVCwZKuJ+H+FiCrs1uVLOL79FwDAgwnjbXYzjr0VPxJc2dgbLl41fzw3ETkXjUaDjIyMEusCAgLQrFkzGI1GfPrpp4iPj0dqaiq++OKLEu0mTZqEgQMHIjIyErdv30ZKSgpatWoF4O6NiAsWLMDo0aPx2muvwd/fH2fPnkVycjK+/vpruLhU/C+CBoMBmZmZ1v++cuUKMjIy4OnpiWbNmlXvBNRhnP6OiCpsd/JiCGFBsy4PIDSyldRxKqzo2O/DOjhbBxHZwfbt2xEdHV3iNWPGDLRv3x4ffvgh5syZg7Zt22LJkiWYNWtWiX3NZjMmTJiAVq1aYcCAAYiMjLTeiBgaGorU1FSYzWb0798fUVFRmDRpEnx9fa1XuCvq6tWr1mzXrl3D+++/j+joaDzzzDM2Ow91kUwIIaQOUVlarRY+Pj7QaDTw9vaWOg5RnXDl1AkkT/snZDI5Et+fh4CGYVJHqhBzvgHXZu4DBBA8pQsUfs77Z2IiZ1fe97dOp0NWVhYiIiKgduLhHOT8KvOzyCvSRHRfQgjsSloEAGjTO9ZpimgAKMq8BQjAtYEni2giIrIpFtJEdF/nDx3AlZPHoXBVovuIMVLHqRTrsA7O1kFERDbGQpqIymWxmLF76WIAQPQjj8IrwHkKUkuRCfqzeQAAt7acrYOIiGyLhTQRlevEru24eek3qDw80PVRxz9hrDqKTtwCLAKKQHe41neXOg4REdUydi+kZ8+eDZlMVuIRmTqdDhMmTEBAQAA8PT0xfPhw5OTk2DsKEVWSyWBA6rLvAQDdho6EupSna9Vkfwzr4NVoIiKyPbsW0gcOHMCXX35pfdRlsVdffRU//fQTVqxYgR07duDq1asYNmyYPaMQURVkbF6PO7duwDOgHjoMGCx1nEqx6M3Qnb4NgOOjiYjIPuxWSOfn5yMhIQELFiyAn5+fdb1Go8E333yDDz/8EH379kWnTp3w7bffYs+ePdi7d6+94hBRJekK8rFv9d0ncHUfMQauSts8MtdRdKdzAZMFLv5quIbw8blERGR7diukJ0yYgEGDBiE2NrbE+vT0dBiNxhLrW7ZsiUaNGiEtLa3UvvR6PbRabYkXEdnXgR9/gC7/DgIaNkKbBx+WOk6l/XlYh7M8gZGIiJyLXR4RnpycjEOHDuHAgQP3bMvOzoZSqYSvr2+J9UFBQcjOzi61v1mzZmHGjBn2iEpEpcjPvYVDG34EAPQcnQh5JR5DWxMIkwW6k7kAOKyDiIjsx+ZXpC9duoRXXnkFS5YssdmTiaZOnQqNRmN9Xbp0ySb9ElHp0lYuhcmgR2iL1mjaqavUcSpNdzYPQm+G3FsJZUMvqeMQEVEtZfNCOj09HdevX0fHjh2hUCigUCiwY8cOfPLJJ1AoFAgKCoLBYEBeXl6J/XJychAcHFxqnyqVCt7e3iVeRGQfuVcv42jKZgBArzGJTjksoujoTQCAW5sAyOTOl5+InMf48eMxdOhQqWPc14IFC9CrVy/4+fnBz88PsbGx2L9/v9SxnJ7NC+mHH34YR48eRUZGhvXVuXNnJCQkWP/b1dUVW7dute5z6tQpXLx4ETExMbaOQ0SVtDv5OwiLBU06dUXDlm2kjlNpwiygO8GnGRJR3WQwGEpdv337dowePRopKSlIS0tDWFgY+vfvjytXrjg4Ye1i80Lay8sLbdu2LfHy8PBAQEAA2rZtCx8fHzz99NOYPHkyUlJSkJ6ejqeeegoxMTF44IEHbB2HiCrh6umTOLNvD2QyOXqNGid1nCrRZ+XBUmiC3EMBVbiP1HGIqBqEELAYzA5/CSFs9h4+/PBDREVFwcPDA2FhYXjxxReRn59v3f7bb78hPj4efn5+8PDwQJs2bbBhwwbr9mPHjmHgwIHw9PREUFAQxo4di5s3b1q39+7dGxMnTsSkSZNQr149xMXFlZpjyZIlePHFF9GhQwe0bNkSX3/9NSwWS4kLm1R5drnZ8H7mzp0LuVyO4cOHQ6/XIy4uDp9//rkUUYjod0II7Fq6CADQ+qG+qNcoXNI8VVU8W4e6VQBkLhzWQeTMhNGCq9P2OPy4oW91h0xpm5us5XI5PvnkE0REROD8+fN48cUX8dprr1nrngkTJsBgMGDnzp3w8PBAZmYmPH9/+FVeXh769u2LZ555BnPnzkVRURGmTJmCkSNHYtu2bdZjLF68GC+88AJSU1MrnKuwsBBGoxH+/v42eZ91lUMK6e3bt5dYVqvVmDdvHubNm+eIwxNRBVzISMflzGNwcXVF9xEJUsepEmERKDrOYR1EVHP8+cnO4eHheOedd/D8889bC+mLFy9i+PDhiIqKAgA0adLE2v6zzz5DdHQ03n33Xeu6hQsXIiwsDKdPn0ZkZCQAoHnz5njvvfcqlWvKlCkIDQ29Z5piqhxJrkgTUc1isZixM2kRACB6QDy869WXNlAVGS7dgeWOATKVC9TNfKWOQ0TVJHOVI/St7pIc11Z++eUXzJo1CydPnoRWq4XJZIJOp0NhYSHc3d3x8ssv44UXXsDmzZsRGxuL4cOHW58IffjwYaSkpFivUP/ZuXPnrIV0p06dKpVp9uzZSE5Oxvbt2202w1pdZddHhBORczi5ewduXrwAlbsHug4dIXWcKiuerUPdyh8yBT/eiJydTCaDXOni8JetZiu6cOECBg8ejHbt2uGHH35Aenq69a/xxTcFPvPMMzh//jzGjh2Lo0ePonPnzvj0008B3H1KdHx8fIkJHDIyMnDmzBk8+OCD1uN4eFT86a3vv/8+Zs+ejc2bN1sLdqo6XpEmquNMRiNSl38PAOgy5HG4eTrnvMtCCBQdv1tIu3NYBxHVAOnp6bBYLPjggw8gl9/95X758uX3tAsLC8Pzzz+P559/HlOnTsWCBQvw0ksvoWPHjvjhhx8QHh4OhaL6Jdt7772HmTNnYtOmTejcuXO1+yMW0kR13uHNG6C9cR2efv7oODBe6jhVZrxaAPNtPWSucqgi/aSOQ0R1iEajQUZGRol1AQEBaNasGYxGIz799FPEx8cjNTUVX3zxRYl2kyZNwsCBAxEZGYnbt28jJSUFrVq1AnD3RsQFCxZg9OjReO211+Dv74+zZ88iOTkZX3/9NVwq8dTZOXPmYNq0aUhKSkJ4eLj1adKenp6lDh2hiuHfPonqMH1hAfauXgYAiBmRAFeV846VKzr2+7COSD/IbXS3PRFRRWzfvh3R0dElXjNmzED79u3x4YcfYs6cOWjbti2WLFmCWbNmldjXbDZjwoQJaNWqFQYMGIDIyEjrjYihoaFITU2F2WxG//79ERUVhUmTJsHX19d6hbui5s+fD4PBgMcffxwhISHW1/vvv2+z81AXyYQtJ0t0EK1WCx8fH2g0Gj7lkKgaUpf9D3tXLYN/aEMkvj8P8kpc3ahpsj88CNP1Ivg/0QLu0YFSxyGiUpT3/a3T6ZCVlYWIiAjeAEeSqszPIq9IE9VR+bdzcXD9GgBAz9HjnLqINl4vhOl6EeAig7oV50QlIiLHYCFNVEft/WEpTHo9Qpq3QLMuMVLHqRbrsI5mvpCreesHERE5Bgtpojoo9+oVHNm6CQDw4JinbDbVk1SKC2m3Npytg4iIHIeFNFEdlLrsfxAWC5p07IKGrdtKHadaTLk6GK8WADJA3ZrDOoiIyHFYSBPVMdlnT+P03t2ATIaeoxOljlNtxVejVRE+cPFUSpyGiKrLCedAoFqmMj+DLKSJ6hAhhPVR4K179UH9RuGS5rGFouO3AABufAgLkVNzdXUFABQWFkqchOq64p/B4p/J8vCuHKI65LfDh3Dp+BG4KBToMfJJqeNUm1mrh+E3LQDArU2AxGmIqDpcXFzg6+uL69evAwDc3d2d/v4Nci5CCBQWFuL69evw9fWt0ANvWEgT1RHCYsHOpYsBAB3iBsO7vvPPtVx8NVrZyAsuPiqJ0xBRdQUHBwOAtZgmkoKvr6/1Z/F+WEgT1REn9+zEjQvnoXRzR7fHRkodxyaswzo4WwdRrSCTyRASEoLAwEAYjUap41Ad5OrqWqlHr7OQJqoDzCYjUpf9DwDQdcjjcPNy/ieCmguM0J/PAwC4teWwDqLaxMXFpVLFDJFUeLMhUR1weMtGaK7nwMPPHx0HPip1HJvQnbgFWADXEA8oAtykjkNERHUQC2miWk5fWIi9PywFAMQMHw1XtVriRLZRdIyzdRARkbRYSBPVcgfXrUbRHS38QhqgbZ9+UsexCYvOBN2Z2wA4rIOIiKTDQpqoFivIu430dasBAD1HjYWLonbcFqE7mQuYBRT13KAIdJc6DhER1VEspIlqsb2rkmHU6xDcLBLNu/WQOo7N/PkhLJxnloiIpMJCmqiWup19FUd+2QgAeHDM+FpTcFoM5rtXpMFhHUREJC0W0kS1VOqy72ExmxHeoRPC2rSTOo7N6M/chjBa4OKrgmsDT6njEBFRHcZCmqgWyjl/Fqf27ARkMvQanSh1HJuyztbRJqDWXGUnIiLnxEKaqBbambQIANCqZ28EhjeRNowNCZMFRSd+L6SjOO0dERFJi4U0US1z4civuHg0A3IXBXqMTJA6jk3pz2sgdGbIPV2hbOT8T2ckIiLnxkKaqBYRFgt2/X41ukP/R+ATGCxtIBsrOnYTwO/DOuQc1kFERNJiIU1Ui5xK24XrWeegdHNDt2FPSB3HpoRFlJj2joiISGospIlqCbPJiNRl3wMAOscPg7u3j8SJbMtwQQNLgREyNwVUTWrXeyMiIufEQpqoljiydRPycq7B3ccXnQYNlTqOzVln62jlD5kLP7qIiEh6/DYiqgUMuiLs/SEZABDz+Bgo1W4SJ7Ktu8M6fh8fzWEdRERUQ7CQJqoF0tetQaEmD77BIYjq21/qODZnvJIPs8YAmVIOdXM/qeMQEREBYCFN5PQKNXk48NMqAEDPUePgolBInMj2Cn+frUPd0h8yV35sERFRzcBvJCInt3f1Mhh1RQhq0hyR3XpIHcfmhBDQHeOwDiIiqnlYSBM5sbycbBze/DMAoNeYRMjkte+ftCmnEKZbOkAhg7oFh3UQEVHNUfu+dYnqkNRl/4PFbELjdtFoHNVB6jh2UXj092Edzf0gV9W+YStEROS8WEgTOamcrHM4mboDANBrzHhpw9iRjrN1EBFRDcVCmshJ7V66GADQssdDCIpoKnEa+zDeLIIxuxCQy+DWyl/qOERERCWwkCZyQhePHcaFw4cgd1GgxxNjpY5jN0W/32SoauoDuburxGmIiIhKYiFN5GSEENi5ZBEAoF3sAPgGBUsbyI6KC2m3NhzWQURENQ8LaSInc3pvKnLOn4Gr2g0xw0dJHcduZk57G/1njkHLuXFoEt8eQ4cOxalTp6SORUREZMVCmsiJmE0m7E6+Oza68+DH4O7jK20gO0rZtBWJHR/Dhin/w5ZftsBoNKJ///4oKCiQOhoREREAgHNJETmRYymbkZd9DW7ePug8eKjUcewq6W8fw5ClhU//JvBq3wCLFi1CYGAg0tPT8eCDD0odj4iIiFekiZyFQVeEPSuSAAAxw0dB6eYucSL7Md8xwHBBCwBwaxMAANBoNAAAf3/O3kFERDUDC2kiJ3Fo/VoUavLgExSMdrEDpI5jV0WZtwABuDb0hMJPDYvFgkmTJqFHjx5o27at1PGIiIgA2KGQnjVrFrp06QIvLy8EBgaWeoOQTqfDhAkTEBAQAE9PTwwfPhw5OTm2jkJUaxRqNTjw0w8AgB5PjIWLonZPBVd0/BaAP2brmDBhAo4dO4bk5GQpYxEREZVg80J6x44dmDBhAvbu3YstW0q/QejVV1/FTz/9hBUrVmDHjh24evUqhg0bZusoRLXGvtXLYSgqQmB4U7SM6SV1HLuyFBqhP5sHAHBrG4CJEydi3bp1SElJQcOGDaUNR0RE9CcyIYSw5wFu3LiBwMBA7NixAw8++CA0Gg3q16+PpKQkPP744wCAkydPolWrVkhLS8MDDzxw3z61Wi18fHyg0Wjg7e1tz/hEktNcz8G3r/4dZpMJw//9NsLbRUsdya4KDuXg9vLTcAl0w8zzi7B69Wps374dzZs3lzoaEVUTv7+ptrH7rB1/vUEoPT0dRqMRsbGx1jYtW7ZEo0aNyiyk9Xo99Hq9dVmr1do5NVHNsWf59zCbTGjUtr1timhDIXDzdPX7sZOig0UAgDc3z8LKtM1Yu3AuvAp+Q3bGbwAAHy9PuLmppYz4h3qRgLL23vRJRETls2shXdoNQtnZ2VAqlfD19S3RNigoCNnZ2aX2M2vWLMyYMcOeUYlqpBu/ZSFz93YAQK8x423T6c3TwFcP2aYvG7MINXT6JQBU+GbTKgBA78efLdHm2yFqjO+glCBdKZ7bAYR2kDoFERFJxK6FdPENQrt3765WP1OnTsXkyZOty1qtFmFhYdWNR1Tj7Vq6GBACLWJ6IbipjYY21Iu8WwDWREYBvzMm6K+aYbl8CDKZTOpE5asXKXUCIiKSkN0K6eIbhHbu3FniBqHg4GAYDAbk5eWVuCqdk5OD4ODgUvtSqVRQqVT2ikpUI106fgRZvx6E3MUFPUaNtV3HSvcaexVVDsCjMeAhdRAiIqIKsPmsHUIITJw4EatXr8a2bdsQERFRYnunTp3g6uqKrVu3WtedOnUKFy9eRExMjK3jEDklIQR2Ji0CAEQ9PAB+waHSBiIiIqJ72PyK9IQJE5CUlIS1a9fCy8vLOu7Zx8cHbm5u8PHxwdNPP43JkyfD398f3t7eeOmllxATE1OhGTuI6oKz+9OQffY0XFVqxAwfJXUcIiIiKoXNC+n58+cDAHr37l1i/bfffovx48cDAObOnQu5XI7hw4dDr9cjLi4On3/+ua2jEDkli9l8d2w0gE6Dh8LD10/iRERERFQamxfSFZmWWq1WY968eZg3b56tD0/k9I6lbMHta1fg5uWNzoP5oCIiIqKayuZjpImo6ox6HfasTAIAPDB8FFTunKOYiIiopmIhTVSDHNrwIwpu58K7fhDaxQ6UOg4RERGVg4U0UQ1RdEeL/WtXAgB6PvEkFK6uEiciIiKi8rCQJqoh9q1ZAUNRIeo3jkDLHjXzyYNERET0BxbSRDWA9sZ1ZGz8CcDdR4HL5PynSUREVNPx25qoBtizYgnMJhPC2rRDePuOUschIiKiCmAhTSSxGxcv4PjObQCAXmMSIZPJJE5EREREFcFCmkhiu5cuBoRAZLceCGnWQuo4REREVEEspIkkdPnEMZw/dAAyuRw9Ro2TOg4RERFVAgtpIokIIbAzaREAIKpvf/iHNpA2EBEREVUKC2kiiZw9uBfXTp+EQqVCzONjpI5DRERElcRCmkgCFrMZu5MWAwA6PTIUnn7+EiciIiKiymIhTSSB4zu2IvfqZai9vNHl0WFSxyEiIqIqYCFN5GBGvQ57ViwBADzw2Eio3D0kTkRERERVwUKayMF+3bgO+bm34F0/EO37D5I6DhEREVURC2kiByrKv4P9a1cAALqPSIDC1VXiRERERFRVLKSJHGj/mhXQFxSgXqNwtOrVW+o4REREVA0spIkcRHvzBn7d+BOAu48Cl8tdJE5ERERE1cFCmshB0lYmwWw0omGrtojo0FnqOERERFRNLKSJHODW5Ys4vn0rAKDXmPGQyWQSJyIiIqLqYiFN5AC7ln4HISxo3rU7QiNbSh2HiIiIbICFNJGdXTmZiXMH90Imk6PHqLFSxyEiIiIbYSFNZEdCCOxMWgQAaNu3HwIahEkbiIiIiGyGhTSRHZ0/tB9XT2VCoVQh5vHRUschIiIiG2IhTWQnFosZu5IWAwA6DoyHl389iRMRERGRLbGQJrKTzB3bcOvyRag9PNFlyONSxyEiIiIbYyFNZAdGgx6pK5YAALo+NhJqD0+JExEREZGtsZAmsoOMTeuRf+smvALqIzpusNRxiIiIyA5YSBPZmK4gH/tXLwcAdB+ZAIVSKXEiIiIisgcW0kQ2dmDtSugK8hHQsBFaP9hH6jhERERkJyykiWzoTu5NHNrwIwCg15hEyOUuEiciIiIie2EhTWRDaSuSYDIa0KBlazTp2FXqOERERGRHLKSJbOTWlUs4lvILAKDXmKcgk8kkTkRERET2xEKayEZ2L/0OQljQtPMDaNCildRxiIiIyM5YSBPZwNXTJ3D2QBpkMjl6jR4ndRwiIiJyABbSRNUkhMDOJYsAAG16P4yAho2kDUREREQOwUKaqJqyfj2IKyePQ+GqRMzjY6SOQ0RERA7CQpqoGiwWM3YtXQwAiB4YD+969SVORERERI7CQpqoGk7s2o6bFy9A5eGBrkNGSB2HiIiIHIiFNFEVmQwGpC7/HgDQdcgIqD09JU5EREREjsRCmqiSdu7cifj4eISEBOPvny/CWU0BogfGSx2LiIiIHIyFNFElFRQUoE3rVnisQxsAQMvuD8FVqZI4FRERETmaQuoARM5m4MCB8NLcwL4LmQCAsLbtJE5EREREUuAVaaJKyr+di/T1a63Lcjn/GREREdVFrACIKiltZRJMBj1CI/kYcCIiorpM0kJ63rx5CA8Ph1qtRrdu3bB//34p4xDdV+7Vyzi6bTMAoNeYRInTEBERkZQkK6SXLVuGyZMnY/r06Th06BDat2+PuLg4XL9+XapIRPeVmvw/CIsFTTp2QcNWbaWOQ0RERBKSrJD+8MMP8eyzz+Kpp55C69at8cUXX8Dd3R0LFy6UKhJRua6dOYXT+1IBmQy9RvNqNBERUV0nyawdBoMB6enpmDp1qnWdXC5HbGws0tLS7mmv1+uh1+uty1qt1iE5yXGKDGacu5EvdYwyCSFw4NuvAQD+UV2x/eQl4OQlAMCejEyY3APg4+uHkAZhUsYEADSt7wk3pYvUMYiIiGo9SQrpmzdvwmw2IygoqMT6oKAgnDx58p72s2bNwowZMxwVjyRw7kY+Bn+6W+oYZQoruoSh2SdgkrngrSNGXHjjQeu2/874NwDAo+3DqDfoVakiWq17qSfaNvCROgYREVGt5xTzSE+dOhWTJ0+2Lmu1WoSFSX/lj2ynaX1PrHupp9QxymQxGXEx1Rdmgw4/9XsM+PAfUkcqU9P6fFQ5ERGRI0hSSNerVw8uLi7IyckpsT4nJwfBwcH3tFepVFCp+OS42sxN6VLjr6K2azxK6ghERERUg0hys6FSqUSnTp2wdetW6zqLxYKtW7ciJiZGikhERERERJUi2dCOyZMnIzExEZ07d0bXrl3x0UcfoaCgAE899ZRUkYiIiIiIKkyyQvqJJ57AjRs3MG3aNGRnZ6NDhw7YuHHjPTcgEhERERHVRDIhhJA6RGVptVr4+PhAo9HA29tb6jhERERUAfz+ptpG0keEExERERE5KxbSRERERERVwEKaiIiIiKgKWEgTEREREVUBC2kiIiIioipgIU1EREREVAUspImIiIiIqoCFNBERERFRFbCQJiIiIiKqAskeEV4dxQ9j1Gq1EichIiKiiir+3nbChyoTlcopC+k7d+4AAMLCwiROQkRERJV1584d+Pj4SB2DqNpkwgl/LbRYLLh69Sq8vLwgk8ls2rdWq0VYWBguXboEb29vm/ZNf+B5dgyeZ8fgeXYMnmfHsde5FkLgzp07CA0NhVzO0aXk/JzyirRcLkfDhg3tegxvb29+UDsAz7Nj8Dw7Bs+zY/A8O449zjWvRFNtwl8HiYiIiIiqgIU0EREREVEVsJD+C5VKhenTp0OlUkkdpVbjeXYMnmfH4Hl2DJ5nx+G5JqoYp7zZkIiIiIhIarwiTURERERUBSykiYiIiIiqgIU0EREREVEVsJAmIiIiIqqCOl9I5+bmIiEhAd7e3vD19cXTTz+N/Pz8ctu/9NJLaNGiBdzc3NCoUSO8/PLL0Gg0DkztHObNm4fw8HCo1Wp069YN+/fvL7f9ihUr0LJlS6jVakRFRWHDhg0OSurcKnOeFyxYgF69esHPzw9+fn6IjY297/8XuquyP8/FkpOTIZPJMHToUPsGrCUqe57z8vIwYcIEhISEQKVSITIykp8dFVDZ8/zRRx9Zv/fCwsLw6quvQqfTOSgtUQ0m6rgBAwaI9u3bi71794pdu3aJZs2aidGjR5fZ/ujRo2LYsGHixx9/FGfPnhVbt24VzZs3F8OHD3dg6povOTlZKJVKsXDhQnH8+HHx7LPPCl9fX5GTk1Nq+9TUVOHi4iLee+89kZmZKd544w3h6uoqjh496uDkzqWy53nMmDFi3rx54tdffxUnTpwQ48ePFz4+PuLy5csOTu5cKnuei2VlZYkGDRqIXr16iSFDhjgmrBOr7HnW6/Wic+fO4pFHHhG7d+8WWVlZYvv27SIjI8PByZ1LZc/zkiVLhEqlEkuWLBFZWVli06ZNIiQkRLz66qsOTk5U89TpQjozM1MAEAcOHLCu+/nnn4VMJhNXrlypcD/Lly8XSqVSGI1Ge8R0Sl27dhUTJkywLpvNZhEaGipmzZpVavuRI0eKQYMGlVjXrVs38fe//92uOZ1dZc/zX5lMJuHl5SUWL15sr4i1QlXOs8lkEt27dxdff/21SExMZCFdAZU9z/PnzxdNmjQRBoPBURFrhcqe5wkTJoi+ffuWWDd58mTRo0cPu+YkcgZ1emhHWloafH190blzZ+u62NhYyOVy7Nu3r8L9aDQaeHt7Q6FQ2COm0zEYDEhPT0dsbKx1nVwuR2xsLNLS0krdJy0trUR7AIiLiyuzPVXtPP9VYWEhjEYj/P397RXT6VX1PL/11lsIDAzE008/7YiYTq8q5/nHH39ETEwMJkyYgKCgILRt2xbvvvsuzGazo2I7naqc5+7duyM9Pd06/OP8+fPYsGEDHnnkEYdkJqrJ6nTll52djcDAwBLrFAoF/P39kZ2dXaE+bt68ibfffhvPPfecPSI6pZs3b8JsNiMoKKjE+qCgIJw8ebLUfbKzs0ttX9H/D3VRVc7zX02ZMgWhoaH3/BJDf6jKed69eze++eYbZGRkOCBh7VCV83z+/Hls27YNCQkJ2LBhA86ePYsXX3wRRqMR06dPd0Rsp1OV8zxmzBjcvHkTPXv2hBACJpMJzz//PP71r385IjJRjVYrr0i//vrrkMlk5b4qWmiUR6vVYtCgQWjdujX+85//VD84kQPNnj0bycnJWL16NdRqtdRxao07d+5g7NixWLBgAerVqyd1nFrNYrEgMDAQX331FTp16oQnnngC//73v/HFF19IHa1W2b59O9599118/vnnOHToEFatWoX169fj7bffljoakeRq5RXpf/zjHxg/fny5bZo0aYLg4GBcv369xHqTyYTc3FwEBweXu/+dO3cwYMAAeHl5YfXq1XB1da1u7FqjXr16cHFxQU5OTon1OTk5ZZ7X4ODgSrWnqp3nYu+//z5mz56NX375Be3atbNnTKdX2fN87tw5XLhwAfHx8dZ1FosFwN2/eJ06dQpNmza1b2gnVJWf55CQELi6usLFxcW6rlWrVsjOzobBYIBSqbRrZmdUlfP85ptvYuzYsXjmmWcAAFFRUSgoKMBzzz2Hf//735DLa+U1OaIKqZU//fXr10fLli3LfSmVSsTExCAvLw/p6enWfbdt2waLxYJu3bqV2b9Wq0X//v2hVCrx448/8mreXyiVSnTq1Albt261rrNYLNi6dStiYmJK3ScmJqZEewDYsmVLme2paucZAN577z28/fbb2LhxY4n7A6h0lT3PLVu2xNGjR5GRkWF9Pfroo+jTpw8yMjIQFhbmyPhOoyo/zz169MDZs2etv6gAwOnTpxESEsIiugxVOc+FhYX3FMvFv7wIIewXlsgZSH23o9QGDBggoqOjxb59+8Tu3btF8+bNS0x/d/nyZdGiRQuxb98+IYQQGo1GdOvWTURFRYmzZ8+Ka9euWV8mk0mqt1HjJCcnC5VKJRYtWiQyMzPFc889J3x9fUV2drYQQoixY8eK119/3do+NTVVKBQK8f7774sTJ06I6dOnc/q7CqjseZ49e7ZQKpVi5cqVJX5279y5I9VbcAqVPc9/xVk7Kqay5/nixYvCy8tLTJw4UZw6dUqsW7dOBAYGinfeeUeqt+AUKnuep0+fLry8vMTSpUvF+fPnxebNm0XTpk3FyJEjpXoLRDVGnS+kb926JUaPHi08PT2Ft7e3eOqpp0oUFVlZWQKASElJEUIIkZKSIgCU+srKypLmTdRQn376qWjUqJFQKpWia9euYu/evdZtDz30kEhMTCzRfvny5SIyMlIolUrRpk0bsX79egcndk6VOc+NGzcu9Wd3+vTpjg/uZCr78/xnLKQrrrLnec+ePaJbt25CpVKJJk2aiJkzZ/KiRgVU5jwbjUbxn//8RzRt2lSo1WoRFhYmXnzxRXH79m3HByeqYWRC8O8yRERERESVVSvHSBMRERER2RsLaSIiIiKiKmAhTURERERUBSykiYiIiIiqgIU0EREREVEVsJAmIiIiIqoCFtJERERERFXAQpqIiIiIqApYSBMRERERVQELaSIiIiKiKmAhTURERERUBSykiYiIiIiq4P8BrCdDgDvJTsoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# define level objects\n", "level1 = Level(0)\n", "level2 = Level(20)\n", "level3 = Level(100)\n", "\n", "# define decay object\n", "decay = Decay([0,0],[[level3,level1],[level3,level2]]) # no decay\n", "\n", "# define parameters\n", "Delta = 20\n", "delta = 0\n", "Omega1 = 1\n", "Omega2 = 1\n", "shift = 0.2 # <--- new detuning\n", "\n", "# define lasers (sort level couples from low to high energy.)\n", "laser1 = Laser(Omega1, Delta-shift, [level1,level3]) # <--- Change the detuning of the laser coupling to level 1\n", "laser2 = Laser(Omega2, Delta-delta, [level2,level3])\n", "\n", "# define system (sort levels by energy in ascending order. The order of the lasers should not matter.)\n", "system = System([level1,level2,level3], [laser1,laser2], decay)\n", "\n", "# draw the system in matplotlib\n", "system.draw()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "e99121e2", "metadata": {}, "source": [ "Note that the draw method shows this change only as a shorter line of Laser 1 that still originates from a non-detuned Level 1. Ideally it would draw this Laser 1 line from a detuning at the first level so that the dashed detuning lines D 1 and D 2 are on the same height again which is what the system represents. But the draw function is very rudimentary. \\\n", "We use the `delta_stark_shift` argument of the simulate method to consider this shift in the simulation." ] }, { "cell_type": "code", "execution_count": 4, "id": "c73b57bc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hamiltonian in the rotating frame: Quantum object: dims = [[3], [3]], shape = (3, 3), type = oper, isherm = True\n", "Qobj data =\n", "[[ 0.2 0. 0.5]\n", " [ 0. 0. 0.5]\n", " [ 0.5 0.5 20. ]]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQhUlEQVR4nO3dd3Rc9Z0+/mf6jEaaURn1bjVLtiW5YCF6ETbN4LDZ9dJsTAILMcVxsgvOgo2TkxjiXdYkEJwGJt9fCARCC8UEXGNcwL2pF6uOumZG08v9/XHtAWFhJHmkka+f1zk6R7r1PR/d8tzPvTMjEwRBABEREZFEyMNdABEREVEoMdwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkKMNdwEQLBAJob29HVFQUZDJZuMshIiKiERAEATabDSkpKZDLz943c8GFm/b2dqSnp4e7DCIiIhqDlpYWpKWlnXWaCy7cREVFARAbx2AwhLkaIiIiGgmr1Yr09PTgefxsLrhwc/pWlMFgYLghIiI6z4zkkRI+UExERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJIS1nCzY8cOLFiwACkpKZDJZHjnnXe+dZ5t27Zh1qxZ0Gg0yM3NxcaNG8e9TiIiIjp/hDXc2O12lJSU4IUXXhjR9I2Njbjppptw9dVX49ChQ1i+fDm+//3v4+OPPx7nSomIiOh8oQznym+44QbccMMNI55+w4YNyM7Oxv/+7/8CAAoLC7Fz50783//9H+bPnz9eZY6Izx9AZYcNeYmR0KoUYa1ltPwBAV5/ABqlHDKZLNzljJg/IMDjC0CnPr/am4iIxldYw81o7d69GxUVFUOGzZ8/H8uXL//GedxuN9xud/Bvq9U6LrU19dqx4PmdUMhlmGLS48r8eNxSmoJpKUYo5JMrMAiCgBMdVnxwpAMfHu1AU68DABCnV+PyPBOuyI/HZbkmxEVqJl3tDo8P7x1qx4fHzDh4sh82tw9xejUKkw24qiAepenRSI3RAQB8fgExejX0asWkCG3H2ix4/YsWbKvpQu+gB4IAzEg1ojQjGjPTo2GK0sDrC8DjDwAAipINSDBow1w1YHV58c7BNmyp6sLhlgFEqJWIj9KgND0aRSkGROtU8AUE9Ay6oZDLYNSpUD4lDnGRmnCXjqOtFvzli2bUdQ6iy+ZCQpQWOQl6TDFFIj5KA4vTi167BwMOD+L0GpSkG3HxlLiwX6BYXV58eqITm6u6YHF4oVXJkRYTgSnxeqgUctjdPjT12tFv90IhlyHbpMfCmanINunDWjcAHG+34J+1PajvGoQ/ICA+SoP4KA2MOhW6bG6c7LWjqdcBl9eP3PhIXJQdi1tLUxChDu/pyOcP4LP6XhxrsyAQEKBVKZBg0EAQgJ5BN463W1FltsHp8UGjVOCqgngsKEnB9FRjWOsGgH67B8fbrWgfcCJKqwxe8LX2O3GszYKjbRbUdw8iNkKNKfGRWFCSjJuLU6DXnFcRYFRkgiAI4S4CAGQyGd5++20sXLjwG6fJz8/H0qVLsXLlyuCwDz/8EDfddBMcDgd0Ot0Z8zz11FNYs2bNGcMtFgsMBkNIageAXXU9+MGrBzDg8A4ZrlMpkG3SQ6WQIUKtRLJRi9lZMVhYmjruG5Y/IOBomwW76nvQY/PA6fWj2+ZGbZcNJ08Fmm8jlwFqpRxxeg0unhKH+dMSUVGYCPk4hx6X149qsw2t/U70OzywOL041DKA3fW9GHT7RrWsWL0a352dhrsvzkR6bMQ4Vfwlf0CA2erCoMuHDosTNZ02vHuoHcfbRx+sc+L1+N5lU/Dd2WlQKyfuLrLb58fB5gF8fNyMN/e1wjbKNlcpZJg3LQnLrspFUUro9rOR8PgC+OREJ17+rBH7TvaPen5TpBrfu2wK7ro4A1Fa1ThU+M16Bt14ZVcTXv6sadTbOQBcnmfC8op8zM6MGYfqvpkgCNjd0IsXt9Xjn7U9o57fqFPhjrIMLCnPQpJxYgO93e3DSzsbsXFXE3rtnlHPf0lOHBaXZ+LSXNOEby/H2y341eZafHy8c9TzRmqUuLU0BTfOSEaWSY/4SM2EHmPGwmq1wmg0juj8LflwM1zPTXp6esjDDSDu4F02Nw429+PvhzuwtboLDo9/2GmjtEosvSQL/3FlTshDjtcfwFsHWvGrzXVoG3AOO41GKcfVBQm4qTgZF0+Jg1opR2WHFTtqurG9pvusJ+KiZANWXJePawsTQt4j0j7gxEs7G/HXfS2wuoY/uGfFRWDRRRm4PM+EtBgdWvud2NvYhx013ajrGkSHxQmFXAa5TAa3LxCcTymX4a6LM7Hs6lzER4W2V0EQBGyv6cZrn7dgV33PsLWrFXLMm5aIf5mdhuw4Pbz+AA61DAR/HB4/VAoZVAo5PL4A6roHcXrvTI3W4QdX5+BfZ6eH/ADk9Pjx3uE2/ON4J9oGnOi0utD/tZCemxCJ785OQ/mUOAQEAS39Thw42Y+GHjssTi+UchniIzXBcZUd4vYjkwE3F6fgu7PTcElOHFSK0Nbe3OvAjtpuHGweQJ/djU6rG3Vdg8HeL5VChptmJOOawkTER2rQZXOhvmsQ9d129NrdiIlQI1avRnSECu0DLuyu74XZ6gIAGLRK3F6WgbLsWEwxRSImQg2DThmSbV4QBFR32sTtdcCFDosLVWYr9jT0InDqfz4lXo+bZyRjSnwk7B4fTvY6cLLXDn8A0KjkyIqLQEKUFh5fADvrevDP2u7gvFOTonDN1ARkm/RIjdYhJVqH1BhdyNq/fcCJ9gEn+uwenOiwYmtVFw63WgAACrkM10xNwPQUIzQqObptbnTb3Oh3eBAfqUFmnB5ZpgholApUma14+2Bb8GJLKZehKMWAnPhImCLVSDRocVmeCQWJUSE71giCgD67By39Tnx0rANv7msNhppYvRpX5JmgUyvh8PhgtrigkMsQE6FGXmIkZqQaYdCp0Gl14aOjZnx83AzfqUZXymVINGgRHaFCVpweU5OisHBmasgvqLz+AA63DOC3OxrwyYkvQ01WXAQy4vRwuH1wev0QBCAuUo0ZqUbMSDUiPykKAw4vvmjqw2ufNwd77L9Kr1ZgVmYM5hUl4juz0hA5yXp2JBturrjiCsyaNQvr168PDnv55ZexfPlyWCyWEa1nNI1zrvwBAY09drT0OyAIAqxO8QD19sHW4IYVH6XB7RelY960JCREaRCpVUKnGtttlEG3D/84bsZzm2uDB4sorRKX5MRhSnwktEoF4iLVSInWYm523Fk3XJfXD6fHD48/AI8vgKZeO7ZXd+O1L1qCV5QlaUbcMCMZBUlR0KuVMOiUyDbpoVGOvku/0+rCK7ua8MedjcFAEqdXI8ukR5xejUiNEnmJUSjPiUNxqvGsPUeCIATbz+HxYXd9L17+rAk768QrSoVchstyTShKMSBOrxbbxKjDrMyYUR/8T4ea9Z/W4lDLQHC4SiFDlFaFOL0aU+L1KMuOw3dmpiJGrx7xsi1OL9460IoXt9WjyyYGdK1KjsJkA5KNWhi0KkxNisKcrFhMSzGMeptxevx4eVcjfru9ARan94zxsXo1riqIx83FybgqP2FUvXUn2q14cXs9/n64PThMLhO39ySDFklGLS7LNWFBSQqiI0beJqcdahnA81vq8Gnl8Fespkg17pibgbsuzhzVrT2vP4D3DrXjN9vqUN9tP2N8nF6Ni3PicGtJyph6MN0+P97Y14r/b89JVJltw05Tmh6NB67Mwbyi0S2/pc+B57fU4W8HWoMn3K+KjlDhX2enYXF51phOuPXdg3j5s0ZsqexCu8V1xniNUo5FF6XjvsunjGr5/oCATys78cedjfi8sW/YabJNejx0dS4Wzkwd9a1ynz+AHbXdePdQOw4096PT4g6G39My4yKw4rp83DgjeVTHgLYBJ17Z1YRPTnSisefM7UUuA26YnoxHK/KQnxg1qroBoMvmwj+Od+JI6wCaehywurw42euA0yteNMtkwILiFDx8TS7yRrH8QEDAnoZevPZFC462WdDa74DXP3SbidOr8dA1ufj3izJG/VxjICDA6fWH/MJdsuHmsccew4cffoijR48Gh91xxx3o6+vDpk2bRrSeiQw33yQQELDpuBnPbKoa9vaQQi5DZlwELss14bqiRFySYwru0P6AgAPN/fjHcTOqzDa0Dzjh8Qfg9wtDDjhxejUevCoHd12cGdLnB/rtHvx2RwNe2dUU3MG+SimXYUaaEbfNSsPNM5KHnMwbe+zYXd+Lo20D6LS64QsI8AcCGHT5cKTNEuylmJsdiwevzMGV+fEhvf21q64H6/5RjYPNA8OON+pUuH5aEm4vy0BJmjEYFixOLz5v7MPxdgusTh/8gQAiNEoMODw41GIJ9lJoVXLcVZaJm4qTUZwWHbLnlVxeP/7yefOQkPN1RckGLLkkE9dPT4ZRJ3aNOz1+HG2zoLFnEGaLG0qFDBqlHGqlHFVmGz4+Zg5esabH6vDvF2VgWooBiQYtkk5dgZ7r1fKxNgte+6IZHx01D9vlr1bIcWtpCu69LBtTk8Src5vLi7quQTT22OHxBaCQy2CK0iBCpUBrvxNvH2wLBlWZDLgoKxblU+KQGq1DrF6NgqQopMXozqn2QEDAP06Y8dExMyo7rGjtd57RC5ufGInF5VlYUJICo04Fl9eP2s5BmK0uWJxeRGqUSIvRIUqrhMPjx/aabvy/3SeDvalqpRwlaUYkG3VINmqRGqPDVfkJyIg7tyv9AYcHW6q6sLehD+0W56leFldwf1XIZbhtZiq+MzMV01KNsDq96LS6YLa64PUHEBOhRmq0DpmnehcPtw7gpZ2N+LSyK7gOhVyG1GgdoiNUyImPxMyMaNw4Ixmmc3zO6mSvHZUdNjT22NFnd6O2axC763uDFzzpsTrcVZaJOVmxiNQo0WVzic+vQYBerURhsiH4v++2ufHxcTN+u6MeLX1n9mCbItWYlRGD22al4trCxHPu1eqwONFpdaN30I3GHju2VXcP2U6vK0zEVQUJiNWrMOj2w+72wesPID02AjnxkZhi0kMul4m3+Op78ee9zUN6hr7KoFWiojARP7g6F7kJkedUNyCeV2wuL8xWF3bUdOPVvV/27ERHqHDjjGSkx0RALhOfB9MqFYjRq1GaHo3CZEPwWGd1efG3/a14ZVcTrsyPx5pbp59zbV913oSbwcFB1NXVAQBmzpyJZ599FldffTViY2ORkZGBlStXoq2tDX/6058AiG8Fnz59OpYtW4Z7770XW7ZswSOPPIIPPvhgxO+Wmgzh5jS3z4+Pjprx7qE27D/1cOxw/w1TpAb5iZFQKeQ42Nz/jbdrACDZqMXd5ZlYUp41rs/0dNvc+NuBVhxtFR9Uc/sC6Bl0w/aV2uQyoCQ9GhFqBdr6ncN2g37VrAzxivW6osRxfQC4oXsQn1Z2on3AhT67B712N6o6bENOvilGLTLj9Oi0udDYYx/2/3La6VDzH1fmhPx211ed7gms7LCKdQ+6caTNgj0NvXB5xYO/WiFHTkIk/IEAGrrtwx4Yvyo1WocfzcvHraWjvyIejcCpB47NVhfMFhcaeux471A7TnR8efvToFVCr1GiY5hega9TyGVYWJqKB6/KCcnBfSRcXjEsfnqiE6/ubR7yHJJGKYfXH8C3NDcAICFKg/+4MgffnZUGY8TEPKPhDwjYVt2FjbuaxvRMzGkVhQm46+JMzM2OnbAHgO1uH/7fnpP47fb6M26XDkelkMGoU6Nn8MsLgVi9GreWpuC6okRkxIq38ybi+ZIqsxXrP6nFpuPmb502SqNEgkGDAYd3yLFoZkY0Lss1IT8xCtERKiQZtMiJjxzX5x69/gD+uq8FG7YPHwy/Sq9WIDteD38AqOm0wX9qJ0g2avHP/7oayhDeij5vws22bdtw9dVXnzF8yZIl2LhxI+655x40NTVh27ZtQ+b54Q9/iBMnTiAtLQ1PPvkk7rnnnhGvczKFm68TBAEOjx9WlxdHWi3YXtONj452nLFDR51K7eU5cUiL1gW7DDNiI8L6DhVBENA24MSmY2b87UBbsEfjNJVChtmZMZiZEYOsuAioFHIo5OIzJiXp0UiNPvOZqYniDwj4vLEPf93Xgg+OdsDjG9ptPcWkx+zMGMRFaqCUyzDo9iFKq0RuQiQuyTGNa6j5NgMOD177ogV/29+K2q7BIeMSDRoUJBmQYtQiIAhw+8TbjHGRaswrSkL5ODwHMxoHmvvxu+0N2FLVNeRWQUKUBjnxkdBrFPD4BfTY3LB7fEiN1p3qpRrbrZVQsTi9eGNfC/66rwU1nV+2eUyEChlxehh1KlicXrQPOGE/ddEyNzsW1xUl4ruz08L6bqyDzf340+6T2NPQiw6LC2qFHIlG8XahSiEXn0fpc8B+qqcqSqvEgpIUfO+ybOTET0yQHM7pZ8P+dqANHRYnbC4f4iM1SDBoIJfJ0DvoQW2XbcjtlcJkA/5tTtqYbq2E0ol2Kz450YndDT3w+gXoNUpEasTHD1r6HKjtHBzSE65XK/CdWam4sywThcnhO0/5AwI2V3biUMsAzBYXIAMMWrGXssPiwv6T/Wc8+J6bEIkll2Thtpmhf9PMeRNuwmEyh5vheHwBHGzuR9uAE3aPHyVpRhQlG0KahsdLa78Dexv6IJcD0RFqzMmMmfB3E4yF1eVFbacNjT0OxEdpUJRsCGt4GY3aThvaLS4oZOKtzXO9PTNRvP4AajptcHkDyI2PnLAejXMlCAIGHF44vOLD4PGRmvOivQGxdrvHP+xHJQiCgF67BzqV4rx6u7DXH0C3zY0+uwep0bpRPeMWTj5/ALVdgxhweKHXKE4F+8nf7j5/AI094lv7A4KA4jQjkgzacdsHGG7O4nwLN0RERDS68/fkv/wnIiIiGgWGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpKUsIebF154AVlZWdBqtSgrK8Pnn39+1unXr1+PgoIC6HQ6pKen44c//CFcLtcEVUtERESTXVjDzeuvv44VK1Zg9erVOHDgAEpKSjB//nx0dXUNO/2rr76Kxx9/HKtXr0ZlZSX++Mc/4vXXX8dPfvKTCa6ciIiIJquwhptnn30W9913H5YuXYqioiJs2LABEREReOmll4adfteuXbj00ktxxx13ICsrC/PmzcPtt9/+rb09REREdOEIW7jxeDzYv38/KioqvixGLkdFRQV279497DyXXHIJ9u/fHwwzDQ0N+PDDD3HjjTd+43rcbjesVuuQHyIiIpIuZbhW3NPTA7/fj8TExCHDExMTUVVVNew8d9xxB3p6enDZZZdBEAT4fD488MADZ70ttXbtWqxZsyaktRMREdHkFfYHikdj27Zt+MUvfoHf/OY3OHDgAN566y188MEH+NnPfvaN86xcuRIWiyX409LSMoEVExER0UQLW8+NyWSCQqFAZ2fnkOGdnZ1ISkoadp4nn3wSd999N77//e8DAGbMmAG73Y77778f//3f/w25/MysptFooNFoQv8CiIiIaFIKW8+NWq3G7NmzsXnz5uCwQCCAzZs3o7y8fNh5HA7HGQFGoVAAAARBGL9iiYiI6LwRtp4bAFixYgWWLFmCOXPmYO7cuVi/fj3sdjuWLl0KAFi8eDFSU1Oxdu1aAMCCBQvw7LPPYubMmSgrK0NdXR2efPJJLFiwIBhyiIiI6MIW1nCzaNEidHd3Y9WqVTCbzSgtLcWmTZuCDxk3NzcP6al54oknIJPJ8MQTT6CtrQ3x8fFYsGABfv7zn4frJRAREdEkIxMusPs5VqsVRqMRFosFBoMh3OUQERHRCIzm/H1evVuKiIiI6Nsw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkKMNdABEREY2M3++H1+sNdxnjRq1WQy4/936XsIebF154AevWrYPZbEZJSQl+/etfY+7cud84/cDAAP77v/8bb731Fvr6+pCZmYn169fjxhtvnMCqiYiIJo4gCDCbzRgYGAh3KeNKLpcjOzsbarX6nJYT1nDz+uuvY8WKFdiwYQPKysqwfv16zJ8/H9XV1UhISDhjeo/Hg+uuuw4JCQl48803kZqaipMnTyI6OnriiyciIpogp4NNQkICIiIiIJPJwl1SyAUCAbS3t6OjowMZGRnn9BplgiAIo52ps7MTP/7xj7F582Z0dXXh64vw+/0jWk5ZWRkuuugiPP/88wDEF5aeno6HH34Yjz/++BnTb9iwAevWrUNVVRVUKtWI1uF2u+F2u4N/W61WpKenw2KxwGAwjGgZRERE4eL3+1FTU4OEhATExcWFu5xxZbFY0N7ejtzc3DPO81arFUajcUTn7zH13Nxzzz1obm7Gk08+ieTk5DGlK4/Hg/3792PlypXBYXK5HBUVFdi9e/ew87z33nsoLy/HsmXL8O677yI+Ph533HEHHnvsMSgUimHnWbt2LdasWTPq+oiIiCaD08/YREREhLmS8Xf6dpTf7x9xJ8ZwxhRudu7ciX/+858oLS0d84p7enrg9/uRmJg4ZHhiYiKqqqqGnaehoQFbtmzBnXfeiQ8//BB1dXX4wQ9+AK/Xi9WrVw87z8qVK7FixYrg36d7boiIiM4nUrwV9XWheo1jCjfp6eln3IqaCIFAAAkJCfjd734HhUKB2bNno62tDevWrfvGcKPRaKDRaCa4UiIiIgqXMb3fav369Xj88cfR1NQ05hWbTCYoFAp0dnYOGd7Z2YmkpKRh50lOTkZ+fv6QW1CFhYUwm83weDxjroWIiIikY0zhZtGiRdi2bRtycnIQFRWF2NjYIT8joVarMXv2bGzevDk4LBAIYPPmzSgvLx92nksvvRR1dXUIBALBYTU1NUhOTj7nt40RERGRNIzpttT69etDsvIVK1ZgyZIlmDNnDubOnYv169fDbrdj6dKlAIDFixcjNTUVa9euBQA8+OCDeP755/Hoo4/i4YcfRm1tLX7xi1/gkUceCUk9REREFDo7duzAunXrsH//fnR0dODtt9/GwoULx329Ywo3S5YsCcnKFy1ahO7ubqxatQpmsxmlpaXYtGlT8CHj5ubmIZ9UmJ6ejo8//hg//OEPUVxcjNTUVDz66KN47LHHQlIPERERhY7dbkdJSQnuvfde3HbbbRO23jF9zg0gvk3rnXfeQWVlJQBg2rRpuOWWW77xLdmTxWjeJ09ERBRuLpcLjY2NyM7OhlarBSB+YrHTO7LPlAs1nUoxpnc1yWSyb+25Ge61njbun3NTV1eHG2+8EW1tbSgoKAAgfp5Meno6PvjgA+Tk5IxlsURERDQCTq8fRas+Dsu6T/x0PiLUYf/2prMa0wPFjzzyCHJyctDS0oIDBw7gwIEDaG5uRnZ2Np9/ISIiorAaU/Tavn079uzZM+SdUXFxcXj66adx6aWXhqw4IiIiOpNOpcCJn84P27onuzGFG41GA5vNdsbwwcFBviWbiIhonMlkskl/ayicxnRb6uabb8b999+PvXv3QhAECIKAPXv24IEHHsAtt9wS6hqJiIiIRmxMse9Xv/oVlixZgvLy8uAXW/l8Ptxyyy147rnnQlogERERnZ8GBwdRV1cX/LuxsRGHDh1CbGwsMjIyxm29Ywo30dHRePfdd1FbWxv8ksvCwkLk5uaGtDgiIiI6f+3btw9XX3118O/TX2S9ZMkSbNy4cdzWe0437PLy8pCXlxeqWoiIiEhCrrrqqrB80faIw82KFSvws5/9DHq9Ppi8vsmzzz57zoURERERjcWIw83Bgwfh9XqDvxMRERFNRiMON1u3bh32dyIiIqLJZExvBb/33nuH/Zwbu92Oe++995yLIiIiIhqrMYWbV155BU6n84zhTqcTf/rTn865KCIiIqKxGtW7paxWa/BD+2w225Bv7PT7/fjwww+RkJAQ8iKJiIiIRmpU4SY6OhoymQwymQz5+flnjJfJZFizZk3IiiMiIiIarVGFm61bt0IQBFxzzTX429/+NuSLM9VqNTIzM5GSkhLyIomIiIhGalTh5sorrwQgfnxyeno65PIxPbJDRERENG7G9AnFmZmZAACHw4Hm5mZ4PJ4h44uLi8+9MiIiIqIxGFO46e7uxtKlS/HRRx8NO97v959TUURERHT+W7t2Ld566y1UVVVBp9PhkksuwTPPPIOCgoJxXe+Y7istX74cAwMD2Lt3L3Q6HTZt2oRXXnkFeXl5eO+990JdIxEREZ2Htm/fjmXLlmHPnj345JNP4PV6MW/ePNjt9nFd75h6brZs2YJ3330Xc+bMgVwuR2ZmJq677joYDAasXbsWN910U6jrJCIiotMEAfA6wrNuVQQgk41o0k2bNg35e+PGjUhISMD+/ftxxRVXjEd1AMYYbux2e/DzbGJiYtDd3Y38/HzMmDEDBw4cCGmBRERE9DVeB/CLML07+SftgFo/plktFgsADHm39XgY022pgoICVFdXAwBKSkrw29/+Fm1tbdiwYQOSk5NDWiARERGd/wKBAJYvX45LL70U06dPH9d1jann5tFHH0VHRwcAYPXq1bj++uvx5z//GWq1Ghs3bgxlfURERPR1qgixByVc6x6DZcuW4dixY9i5c2eICzrTmMLNXXfdFfx99uzZOHnyJKqqqpCRkQGTyRSy4oiIiGgYMtmYbw2Fw0MPPYT3338fO3bsQFpa2rivb0zh5usiIiIwa9asUCyKiIiIJEIQBDz88MN4++23sW3bNmRnZ0/IekccblasWDHihT777LNjKoaIiIikY9myZXj11Vfx7rvvIioqCmazGQBgNBqh0+nGbb0jDjcHDx4c0XSyEb49jIiIiKTtxRdfBABcddVVQ4a//PLLuOeee8ZtvSMON1u3bh23IoiIiEh6BEEIy3r5zZdEREQkKWN6oPjqq68+6+2nLVu2jLkgIiIionMxpnBTWlo65G+v14tDhw7h2LFjWLJkSSjqIiIiIhqTMYWb//u//xt2+FNPPYXBwcFzKoiIiIjoXIT0mZu77roLL730UigXSURERDQqIQ03u3fvhlarDeUiiYiIiEZlTLelbrvttiF/C4KAjo4O7Nu3D08++WRICiMiIiIaizGFG6PROORvuVyOgoIC/PSnP8W8efNCUhgRERHRWIwp3Lz88suhroOIiIgoJM7pizP37duHyspKAEBRURFmz54dkqKIiIiIxmpMDxS3trbi8ssvx9y5c/Hoo4/i0UcfxUUXXYTLLrsMra2toa6RiIiIzkMvvvgiiouLYTAYYDAYUF5ejo8++mjc1zumcPP9738fXq8XlZWV6OvrQ19fHyorKxEIBPD9738/1DUSERHReSgtLQ1PP/009u/fj3379uGaa67BrbfeiuPHj4/remXCGL7VSqfTYdeuXZg5c+aQ4fv378fll18Oh8MRsgJDzWq1wmg0wmKxwGAwhLscIiKis3K5XGhsbER2dnbw41YEQYDT5wxLPTql7qxfwfRtYmNjsW7dOnzve987Y9xwr/W00Zy/x/TMTXp6Orxe7xnD/X4/UlJSxrJIIiIiGiGnz4myV8vCsu69d+xFhCpi1PP5/X688cYbsNvtKC8vH4fKvjSm21Lr1q3Dww8/jH379gWH7du3D48++ij+53/+J2TFERER0fnt6NGjiIyMhEajwQMPPIC3334bRUVF47rOMd2WiomJgcPhgM/ng1Ipdv6c/l2v1w+Ztq+vLzSVhghvSxER0fnkfL8t5fF40NzcDIvFgjfffBN/+MMfsH379mEDTlhvS61fv34ssxEREVEIyGSyMd0aCge1Wo3c3FwAwOzZs/HFF1/gueeew29/+9txW+eYws2SJUtCXQcRERFdAAKBANxu97iuY8wf4uf3+/HOO+8EP8Rv2rRpuOWWW6BQKEJWHBEREZ2/Vq5ciRtuuAEZGRmw2Wx49dVXsW3bNnz88cfjut4xhZu6ujrceOONaGtrQ0FBAQBg7dq1SE9PxwcffICcnJyQFklERETnn66uLixevBgdHR0wGo0oLi7Gxx9/jOuuu25c1zumcPPII48gJycHe/bsQWxsLACgt7cXd911Fx555BF88MEHIS2SiIiIzj9//OMfw7LeMb0VfPv27fjlL38ZDDYAEBcXh6effhrbt28f9fJeeOEFZGVlQavVoqysDJ9//vmI5nvttdcgk8mwcOHCUa+TiIiIpGlM4Uaj0cBms50xfHBwEGq1elTLev3117FixQqsXr0aBw4cQElJCebPn4+urq6zztfU1IQf//jHuPzyy0e1PiIiIpK2MYWbm2++Gffffz/27t0LQRAgCAL27NmDBx54ALfccsuolvXss8/ivvvuw9KlS1FUVIQNGzYgIiICL7300jfO4/f7ceedd2LNmjWYMmXKWF4CERERSdSYws2vfvUr5Obm4pJLLoFWq4VWq8Wll16K3NxcPPfccyNejsfjwf79+1FRUfFlQXI5KioqsHv37m+c76c//SkSEhKG/V6Kr3O73bBarUN+iIiISLpG9UBxIBDAunXr8N5778Hj8WDhwoVYsmQJZDIZCgsLgx/SM1I9PT3w+/1ITEwcMjwxMRFVVVXDzrNz50788Y9/xKFDh0a0jrVr12LNmjWjqouIiGiyCQQC4S5h3I3hSxOGNapw8/Of/xxPPfUUKioqoNPp8OGHH8JoNJ71FlIo2Ww23H333fj9738Pk8k0onlWrlyJFStWBP+2Wq1IT08frxKJiIhCSq1WQy6Xo729HfHx8VCr1ef0rdyTlSAI6O7uhkwmg0qlOqdljSrc/OlPf8JvfvMb/Md//AcA4NNPP8VNN92EP/zhD5DLR3+Hy2QyQaFQoLOzc8jwzs5OJCUlnTF9fX09mpqasGDBguCw00lWqVSiurr6jM/Y0Wg00Gg0o66NiIhoMpDL5cjOzkZHRwfa29vDXc64kslkSEtLO+cPBB5VuGlubsaNN94Y/LuiogIymQzt7e1IS0sb9crVajVmz56NzZs3B9/OHQgEsHnzZjz00ENnTD916lQcPXp0yLAnnngCNpsNzz33HHtkiIhIktRqNTIyMuDz+eD3+8NdzrhRqVQh+aaDUYUbn893xrd0qlQqeL3eMRewYsUKLFmyBHPmzMHcuXOxfv162O12LF26FACwePFipKamYu3atdBqtZg+ffqQ+aOjowHgjOFERERScvp2zbnesrkQjCrcCIKAe+65Z8htHpfLhQceeAB6vT447K233hrxMhctWoTu7m6sWrUKZrMZpaWl2LRpU/Ah4+bm5jHd8iIiIqILk0wYxaPJp3tTvs3LL7885oLGm9VqhdFohMVigcFgCHc5RERENAKjOX+PqudmMocWIiIiImCMH+JHRERENFkx3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkTIpw88ILLyArKwtarRZlZWX4/PPPv3Ha3//+97j88ssRExODmJgYVFRUnHV6IiIiurCEPdy8/vrrWLFiBVavXo0DBw6gpKQE8+fPR1dX17DTb9u2Dbfffju2bt2K3bt3Iz09HfPmzUNbW9sEV05ERESTkUwQBCGcBZSVleGiiy7C888/DwAIBAJIT0/Hww8/jMcff/xb5/f7/YiJicHzzz+PxYsXnzHe7XbD7XYH/7ZarUhPT4fFYoHBYAjdCyEiIqJxY7VaYTQaR3T+DmvPjcfjwf79+1FRUREcJpfLUVFRgd27d49oGQ6HA16vF7GxscOOX7t2LYxGY/AnPT09JLUTERHR5BTWcNPT0wO/34/ExMQhwxMTE2E2m0e0jMceewwpKSlDAtJXrVy5EhaLJfjT0tJyznUTERHR5KUMdwHn4umnn8Zrr72Gbdu2QavVDjuNRqOBRqOZ4MqIiIgoXMIabkwmExQKBTo7O4cM7+zsRFJS0lnn/Z//+R88/fTT+PTTT1FcXDyeZRIREdF5JKy3pdRqNWbPno3NmzcHhwUCAWzevBnl5eXfON8vf/lL/OxnP8OmTZswZ86ciSiViIiIzhNhvy21YsUKLFmyBHPmzMHcuXOxfv162O12LF26FACwePFipKamYu3atQCAZ555BqtWrcKrr76KrKys4LM5kZGRiIyMDNvrICIioskh7OFm0aJF6O7uxqpVq2A2m1FaWopNmzYFHzJubm6GXP5lB9OLL74Ij8eD7373u0OWs3r1ajz11FMTWToRERFNQmH/nJuJNpr3yRMREdHkcN58zg0RERFRqDHcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkKMNdAH1NwA90HgPMx4DuSqC7GuitA9yDQMALaKIAfQIQX3DqZyqQMhOITAh35YDPA3QcAlr3AeYjQF8jYG0HfC5xfGQiYEgGDClATDaQUgoklwC6mHBWLfI4gJY9QNt+wHwUGGgB7N1AwAfIFEBkPBCVItYfkwUkl4q1aw3hrhxwDgAnPxNr76oErG2Asx+QyQF1FKCJBLRGsc1NuUBcHpA4HdDHhbtyYKAZOLkb6Dgsbue2DsBjP1W7HlBHivVHnW73YnF7D/c2IwhiW7d+IW7rA82Ao1fcfwW/OF6lA7TRgDFVbPvUWUDKLPH1hFPAD7QfAtoPnNpe2k/V7hOPMQE/oNSIbRydAZjygYxycXuXK8Jbu88DtO0T99GeWsDRAzj6AGcf4HWK06gigIg4cXtJnAZkXgokFAIyWVhLh3tQbPPeOqC/Ceg/Kba9ywL4nKe2+UjxOBmXK7Z31mVATGZ46wYAlxVoPwj01op19zcBllbANSC2u1wlnpuiM4D4fCB1tvhjTAtbyTJBEISwrT0MrFYrjEYjLBYLDIZJcGISBPHgWPepeJBv2Qu4raNfTlwekHmJuDPkVgARsaGv9esEQQwztZ8ATTuBls/FnXS0YrKB7CuAghuBKVeKJ4XxFgiIB5rafwCNO8RAFvCOciEywJQntnnBjUDW5YBKOy7lDuH3idtJ7T+Axu1iMBACo1yITAyXudcBedeJB6KJOHH5vUDzbqDmY6Bmk3igHy2ZHEibCxRcD+RfLwb8iThxeRzitlKzSazf1j76ZciVQPrFQF6FuJ8mTp+Y2l0WoG6zWHvtJ2IYGC1djLif5lwD5M0Xg/5EsLSK23rtp+L27hkc/TKiksW6T/9MxPERAHrrgar3gaoPxGOM4B/9MuJyxW0l51rxWKOOCH2dXycIQHcVUPm+WH/HYQCjjAox2cCjh0Ja1mjO35Mi3LzwwgtYt24dzGYzSkpK8Otf/xpz5879xunfeOMNPPnkk2hqakJeXh6eeeYZ3HjjjSNa16QIN4EA0Po5UPl3oPI98arvqzQG8cQTXyj2zpjyxQOLQiUmaGsb0FMjXnV1VYob4Vc3PJkcyLgEmHoTMPVG8QomVPxesZeg6gPxx9o2dHxEHJBeJl51mPLF5K7Wi1eDg13i9NY2sUeq45B4BfBVqgjx4DP1ZvHkFcordI9DPDhWfwhUbwLsXUPHG1K/vEKNyxWvoBQq8TUPdoonM2u7eMXYfhCwtHytdj2Qc7UYdPLnA3pT6Gp3DogB+PTJyTUwdHxcHpBZDiTOEP/fuhgx8HhsYk+Io1c80PbWifX31Q+dX58AFN4MFN4iHkAVqtDVbu8F6j4Ra6/bPDS8y5Vie6fNFa/4DGniFaAQEOv2DIonZmubWHvHYaCvYejyY7LE7aVwAZB2UWhDmqX1VBD7WNx2TvdCAuK2mjpb7JGJnSK2oVwJyOXiPuh1iu0+0CLur637AGvr0OVHJoknrtxrxW0nlNt7b73Y5tUfiYEy4PtynNYotnnSdPFqO8IEKNSAQin2VPpcYo9If6PYi9y0U9yWviplphgu868X/4ehCmmnL/iqPxKPMeYjQ8dHmMT/c8JUcR/VxYphRa0X5/U6xF7XnlrxGHNy99CLrtPhOH8ekDcvtAFTEMRepar3xWDQdXzoeEPaqTbPFHtkjGni/1yp+3J/tXaIx/W2fWcGIoVavIjNmycGzLic0NUe8ANtB4Cqv4u1f/0YEZ0BJEwT97eYLCA6XWx7lU6c19kPDJwU7zy07hN7zb6zITS1nXJehZvXX38dixcvxoYNG1BWVob169fjjTfeQHV1NRISzrzVsmvXLlxxxRVYu3Ytbr75Zrz66qt45plncODAAUyfPv1b1xe2cDPYDTT989TJ9SPxZHmaUiee0LMvFzfcxOmjO0A7+4HmPWLoqN8GdB4dOj5xunjCnXoTkFQsHnxHw9IGNGwF6reKJymX5ctxKj2Qew2QfaV4UjQVjG75jj7xdkrNx2K7fPXgL1eKV4r514vtkjBt9LX31gP1W8Rg0LB96EFOYzh1JXe12OsSO2V0B4rBbvEAVPsPMSwNuZKXAelzgYIbxLY35Y9u2adve9T+Q6z96ycnXYx4gMu5RmwjQ8rIlw0ANrO43NpPxP+r+yv/U200MOUqsV2mXD36bnG/TwwhjdvE/2vL5xgSviNMYu3588V1aI2jW/5AC1D7sdjmjTsAv/vLcfp4sebTtY+2d8HrEm81NZyq/ev7kjFDrLvgeiDzstH31PU1iAGv7lOxdq/jy3EyuXjSzr1ODDvJpaPb3t028TjQsG34XjFT/pdhJL1MDDIj5feJPZ31W8Vtsm0/hvxPo1LEdsm/Hsi4GNBFj3zZgHgcOPmZuI/WbPrahYNMbJe8eWKPV1LJ6NrF6xL3n/rNYtt3nRg6PipF7L3Mny8ex0Z729DRJx7X6z4Vl2/r+HKcXCkeF6feLC4/OmN0y3ZZxO2k7lOgbgtg+dqFcEz2qXaZJ65ntNujrVPcXuo+EWv/ao+eQi3uQ4U3i0EqKnF0yxaEkPdKnlfhpqysDBdddBGef/55AEAgEEB6ejoefvhhPP7442dMv2jRItjtdrz//vvBYRdffDFKS0uxYcO3p8TxCjeC143evlq0WBrQOFCPw12HUG07CbfPCZXXhQKHFYVuD4o8HqgFAWZdFI4l5qMyIhI2lQaCTIbc6Fzkx+RjauxURKoi0evqRVVfFap6q9Dn7oPX70W2MRv5MfnIj8lHlDoKA+4BVPVV4XjPcXQ5u+D0OZGljcdUjwcFXfWIaz+KQRlQpVHhsEaDNrUGfSoNUjUxyDFkosRUjKzYAggKJeotJ3G49xjqLQ0wO3sQJwDpbidKLT2Y6vFAFxDQo1SgSh+N6tg0NKqUiNAnIlGfhGmmaSiKK4JBbYDVY0VNfw1q+2vRaGmEWqFGjDYGRbFFmBo3FTGaGAx6B1HdV43q/mrUD9RDLpPDqDZgqjoWM2y9iG/+Au7+RpxQq3FCo0aNWg2vXIEIlR4F+lSUmmYgM7YAGr0JTY5OHOuvxuG+Sgy6rUDAi5yADCW2fuQNmBHnD6BbqUC1WoUjkdHoiYiBWxOJlNg8FMQVojC2EKmRqbB6rGi0NOJoz1F02jvh8DkQr4sPtndqVCocXgearE043H0Y7YPtsLqtiNPFoSCmAAUyDTK76uA+uRMtlkYc0GrQqFKhW6FANBQo1MSiMDoXeYmzIItMQDf8ONhfjWprA1oHO6ASBGTINSjy+FDS2wrjYBfcMhmq1WpUqVWo0Rvg1RqRaMhAXvJclCSUwhQh9g7VD9Sjpq8GtQO1cPlciNZEY0r0FMwwzUBiRCLkMjnqBupQ21+L6v5qDHoHYVAbkGnIREnsNKTauqBp/Ay1rTtRCTcq1Wr0KeTQCQLSoMbMiBTkxhUiJn462pUyVLm6cai/Gh2OTsgCAcQrtCiV6zHV2o30jipYBDeaVEoc1GjQrFLBrdYhSmdCQUIppqZfjrzYAngDXrTb23Gs+xgarY0Y9AxCp9SJ+0FsPnKjcyEIAswOM452H0W9pR5WtxUKuQJ50XkoiC1Avj4N8rb96GnYjEPdh1GpENCjUCAAoMDjRaHKgKlxRYiKmwpbZBwOe3pxbLAFrQ4z7F4n0rWxyFMaMCugQHJ3A4TO42hUCKhWq1GpUaNHoYBJqUemMRul2dchK60caoUGbYNtqOmvQU1/DTrtnTBqjEjWJ2NG/AxkGbIQoYpAx2AHavprUN1fjY7BDuhVeiREJKA4vhg50TkwKLToaNyKyubtqByoxcmAE1pBQKw/gGK3G9OgRXzqXPTGTcEJuRcnnF1odHZCEAToFRrM0KehWBGFTIcF6DyGk/11OKpW4oRGDadMDgWAKZpYFCaUYGrOjYgyFaDT0YnK3kpU9lXC6rHCH/Ajy5gV3MYNagP6XH2o7qvG8d7j6Hf1w+13I8OQgfyYfBTEFiBOG4f+/gZU1X2AI50HYHb2YFAmIN3rQ5HHg0K3F8nGLDgTi1AbGY2D3gGc9PSjx2NBgjYOOfoUFGsTkB+QQdHXhNbOwzjsMqNOpUKbUgljIIBUv4AZhmwUZV0DfdZVsCoVqO6rRk1/DRosDdAoNIiPiEdhbGHwuDPoHURtfy1q+mtQP1APpVyJWG0sCmILUBRXhFhtLFw+Fypbd6GqZQdqLPUIuG0w+H0o8HhR4nIjRZBBSJyOE8ZEnFAClZ5+OAUftAotcqLSMdOQgylyHQz2HrSaD6JqoA6HA3b0KRQQACT7fCj0CZgaV4T0KdehP3ka6l3dONJ9BF2OLrj9biREJCAvJg/5MfnIiMqAzWPDSetJHOk5go7BDjh8DsRoYpAfK/5PMg2ZcHgdaLaexIHmbWjpOQGLswcGlw1T3W4UejzI9XjhV2rRnjwN+yMiUAsvOv0O6FV6FEbnojAqG1MjkqB2WmDpq8OhroOodrSjGV4IANK8YhuUBhSITZ0Lf9alqDckoGawGTX9NXD6nEjQJSDbmI3i+GLE6+Ihk8nQYGlAbX8tavtrMegdRKw2FhmGDJSYSsTpIuJDdo4FzqNw4/F4EBERgTfffBMLFy4MDl+yZAkGBgbw7rvvnjFPRkYGVqxYgeXLlweHrV69Gu+88w4OHz58xvRutxtu95dXdlarFenp6SEPNzv2b8CyYy+EbHlERETnq9TIVGz6l00hXeZowk1Y3y3V09MDv9+PxMSh3V2JiYmoqqoadh6z2Tzs9Gazedjp165dizVr1oSm4LPIMGRAJghI8gvICADTFFEojkxHpCEdg1HxqFQpUGk7iareKgQQCPYIFMcXI04bB6/gFa86+mpQ1V8Fj9+DaE00cqJzMN00HQkRCZBBhvqBejEpD9TC6XPCoDYgy5iFkvgSpEWmQaVQoWGgAVV9Vajpr4HVY0WEMgKZhkzMii9BjlwLo8WM1u6jqLI14ZB/EN0Q392RFBAwy69AgToGKcZM9OrjUKdU4ICvHy32Djh9Thg1RkyNmRq8snb5XWi1teJQ1yE0WZtg89igU+qCVyY5xhz4BT86HZ042n0UjdZGWN1WqBVqFMQUID82H3kxeVDIFOhx9uBI9xHU9Negz9UHuUyOwthCFMYVYmp0PvS2TljMh3Ck9wSOu7rQJrjhQgAZvgDyvX7MEjRI1MbAo49HZYQeR2VeNHgt6HdbkBCRgIyoDMxMmIn0qHQo5Uo0WZtQ3VeNqv4qdNo7Ea2JRrI+GcXxxcg0ZEKn1KF9sD14hd5h70CUOgqJEYkoSShBjjEHUeoodNhPXaH3VaNtsA0RygiYdCaUJpSiMK4QCSoDus2HUWneh0prA5q8VkAIIMrvR4nHh+neADKVEfDoYtAUYcAhpQyV/kG4ZIBcrkBudC6mxk5FQUwBdEodOuwdONZzDMd7jwevvr/ao6dX69Hn7ENVXxUq+yox4B6Ax+9BliErePUdo42BxW1BdV81jvUcQ4+zBw6fA9nG7GCbJ+mT4HD0oqb1MxzqPow2Zzd6/S4k+wPI8XhR4vEhJwDI1JFi3Ro16uUCWv0OROtikRqZihmmGZgaOxU6pS7YE1nZW4kGSwN0Sh1MOhOK4opQEFsAg9oAm8cWvPpusDRAJVchVhuLwrhCFMUWIUYbA6fPGfyf1A3UQQ45DBoDiuKKUBJfgmR9MvyCH5WdB1DZ/jlqrE3w+N3QBgIo8PpR6nJiitePCJkCJyOicEKrw0ElMCADBIUKaYYsFMQWYGrsVCRHJqPH2YOavhoc7D6IHkcPnD4nkvRJwW38dK9fk0Xs0et0dMLhdYg9erEFwSt0h8+BZmvzl71+HmvwtRXGFiInOgf+gB+tg6042LkfjT0n0OXshiEAFPkCKHK5kO9yQiUAvSoVDkToUaNWokkmQKFQI82QgYL4YhTHFyNaEw23342a/hpU9lWiuq8abr8bJp0JOcYczIifAZPOBEEQ0GBpCLanw+tAjDYGWYYsFMcXI0mfBIVcgcaBxmAvlM1jQ7QmGpmGTMxMmIlMQyYilBFosDSgsq8Sld1H0evogk4QkOIXMMvtRYHLAZPbiU6lEtUaNQ5oNWhVyAC5CjEaI0qT5qIgSdw3bR4bGi2NONR1CA2WBrh8LmiV2uC2e7qd2gfbcbTnKBosDbB77VDJVcH/SW50LmSQocvRhaM9R1E7UAubxwa5TI6CGPF/WxhXCI1Cg15nL472HMWJ3hPosZvh8zlRINNhmtePIscgjG477AEPjqlVOKpRo1mphFUuQ6raiBzjFJSmX47U2HwIgoCT1pOo7KtEVV8VOuwdiNPGIS0qDcWmYmQYMqBWqIPHlNr+WrQNtsGoMSJJn4QZphnINmYjQhmBTkdncJoWW8uXx534EhTEFiBaE40uR5fYs99XhSZrI9SQI0aQoxRqzHC5kGQfgNXnwHG5HyfUKtSrlAjI5dDK1ZgWkYoZiTORlVYOmVqPZmszjvUcw7HeY7B77RAE4Yy7BJ2OTvEuQe9xWNwW+AI+ZBoykR+Tj7zoPMRoY9Dr6kVNfw2OdB9BQUzBuJ93zyasPTft7e1ITU3Frl27UF5eHhz+X//1X9i+fTv27t17xjxqtRqvvPIKbr/99uCw3/zmN1izZg06OzvPmH6iem4CAT98gh9qhTpkyyQiIjofBYQA5LLQfpTeedNzYzKZoFAozgglnZ2dSEpKGnaepKSkUU2v0Wig0WhCU/BZyOUKqBHmz4AgIiKaBEIdbEa9/nCuXK1WY/bs2di8eXNwWCAQwObNm4f05HxVeXn5kOkB4JNPPvnG6YmIiOjCEvZPKF6xYgWWLFmCOXPmYO7cuVi/fj3sdjuWLl0KAFi8eDFSU1Oxdu1aAMCjjz6KK6+8Ev/7v/+Lm266Ca+99hr27duH3/3ud+F8GURERDRJhD3cLFq0CN3d3Vi1ahXMZjNKS0uxadOm4EPDzc3NkH/lMw0uueQSvPrqq3jiiSfwk5/8BHl5eXjnnXdG9Bk3REREJH1h/5ybiTYpPqGYiIiIRmU0529+KzgRERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSYoy3AVMNEEQAABWqzXMlRAREdFInT5vnz6Pn80FF25sNhsAID09PcyVEBER0WjZbDYYjcazTiMTRhKBJCQQCKC9vR1RUVGQyWQhXbbVakV6ejpaWlpgMBhCumypYVuNHNtq5NhWI8e2Gh2218iNV1sJggCbzYaUlBTI5Wd/quaC67mRy+VIS0sb13UYDAZu/CPEtho5ttXIsa1Gjm01OmyvkRuPtvq2HpvT+EAxERERSQrDDREREUkKw00IaTQarF69GhqNJtylTHpsq5FjW40c22rk2Fajw/YaucnQVhfcA8VEREQkbey5ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuAmRF154AVlZWdBqtSgrK8Pnn38e7pLC7qmnnoJMJhvyM3Xq1OB4l8uFZcuWIS4uDpGRkfiXf/kXdHZ2hrHiibVjxw4sWLAAKSkpkMlkeOedd4aMFwQBq1atQnJyMnQ6HSoqKlBbWztkmr6+Ptx5550wGAyIjo7G9773PQwODk7gq5gY39ZW99xzzxnb2vXXXz9kmguhrdauXYuLLroIUVFRSEhIwMKFC1FdXT1kmpHsd83NzbjpppsQERGBhIQE/Od//id8Pt9EvpRxN5K2uuqqq87Yrh544IEh01wIbQUAL774IoqLi4MfzFdeXo6PPvooOH6ybVcMNyHw+uuvY8WKFVi9ejUOHDiAkpISzJ8/H11dXeEuLeymTZuGjo6O4M/OnTuD4374wx/i73//O9544w1s374d7e3tuO2228JY7cSy2+0oKSnBCy+8MOz4X/7yl/jVr36FDRs2YO/evdDr9Zg/fz5cLldwmjvvvBPHjx/HJ598gvfffx87duzA/fffP1EvYcJ8W1sBwPXXXz9kW/vLX/4yZPyF0Fbbt2/HsmXLsGfPHnzyySfwer2YN28e7HZ7cJpv2+/8fj9uuukmeDwe7Nq1C6+88go2btyIVatWheMljZuRtBUA3HfffUO2q1/+8pfBcRdKWwFAWloann76aezfvx/79u3DNddcg1tvvRXHjx8HMAm3K4HO2dy5c4Vly5YF//b7/UJKSoqwdu3aMFYVfqtXrxZKSkqGHTcwMCCoVCrhjTfeCA6rrKwUAAi7d++eoAonDwDC22+/Hfw7EAgISUlJwrp164LDBgYGBI1GI/zlL38RBEEQTpw4IQAQvvjii+A0H330kSCTyYS2trYJq32ifb2tBEEQlixZItx6663fOM+F2lZdXV0CAGH79u2CIIxsv/vwww8FuVwumM3m4DQvvviiYDAYBLfbPbEvYAJ9va0EQRCuvPJK4dFHH/3GeS7UtjotJiZG+MMf/jAptyv23Jwjj8eD/fv3o6KiIjhMLpejoqICu3fvDmNlk0NtbS1SUlIwZcoU3HnnnWhubgYA7N+/H16vd0i7TZ06FRkZGWw3AI2NjTCbzUPax2g0oqysLNg+u3fvRnR0NObMmROcpqKiAnK5HHv37p3wmsNt27ZtSEhIQEFBAR588EH09vYGx12obWWxWAAAsbGxAEa23+3evRszZsxAYmJicJr58+fDarUGr9Kl6Ottddqf//xnmEwmTJ8+HStXroTD4QiOu1Dbyu/347XXXoPdbkd5efmk3K4uuC/ODLWenh74/f4h/zAASExMRFVVVZiqmhzKysqwceNGFBQUoKOjA2vWrMHll1+OY8eOwWw2Q61WIzo6esg8iYmJMJvN4Sl4EjndBsNtV6fHmc1mJCQkDBmvVCoRGxt7wbXh9ddfj9tuuw3Z2dmor6/HT37yE9xwww3YvXs3FArFBdlWgUAAy5cvx6WXXorp06cDwIj2O7PZPOx2d3qcFA3XVgBwxx13IDMzEykpKThy5Agee+wxVFdX46233gJw4bXV0aNHUV5eDpfLhcjISLz99tsoKirCoUOHJt12xXBD4+aGG24I/l5cXIyysjJkZmbir3/9K3Q6XRgrI6n593//9+DvM2bMQHFxMXJycrBt2zZce+21YawsfJYtW4Zjx44Nec6NhvdNbfXVZ7JmzJiB5ORkXHvttaivr0dOTs5Elxl2BQUFOHToECwWC958800sWbIE27dvD3dZw+JtqXNkMpmgUCjOeCq8s7MTSUlJYapqcoqOjkZ+fj7q6uqQlJQEj8eDgYGBIdOw3USn2+Bs21VSUtIZD637fD709fVd8G04ZcoUmEwm1NXVAbjw2uqhhx7C+++/j61btyItLS04fCT7XVJS0rDb3elxUvNNbTWcsrIyABiyXV1IbaVWq5Gbm4vZs2dj7dq1KCkpwXPPPTcptyuGm3OkVqsxe/ZsbN68OTgsEAhg8+bNKC8vD2Nlk8/g4CDq6+uRnJyM2bNnQ6VSDWm36upqNDc3s90AZGdnIykpaUj7WK1W7N27N9g+5eXlGBgYwP79+4PTbNmyBYFAIHgQvlC1trait7cXycnJAC6cthIEAQ899BDefvttbNmyBdnZ2UPGj2S/Ky8vx9GjR4eEwU8++QQGgwFFRUUT80ImwLe11XAOHToEAEO2qwuhrb5JIBCA2+2enNtVyB9RvgC99tprgkajETZu3CicOHFCuP/++4Xo6OghT4VfiH70ox8J27ZtExobG4XPPvtMqKioEEwmk9DV1SUIgiA88MADQkZGhrBlyxZh3759Qnl5uVBeXh7mqieOzWYTDh48KBw8eFAAIDz77LPCwYMHhZMnTwqCIAhPP/20EB0dLbz77rvCkSNHhFtvvVXIzs4WnE5ncBnXX3+9MHPmTGHv3r3Czp07hby8POH2228P10saN2drK5vNJvz4xz8Wdu/eLTQ2NgqffvqpMGvWLCEvL09wuVzBZVwIbfXggw8KRqNR2LZtm9DR0RH8cTgcwWm+bb/z+XzC9OnThXnz5gmHDh0SNm3aJMTHxwsrV64Mx0saN9/WVnV1dcJPf/pTYd++fUJjY6Pw7rvvClOmTBGuuOKK4DIulLYSBEF4/PHHhe3btwuNjY3CkSNHhMcff1yQyWTCP/7xD0EQJt92xXATIr/+9a+FjIwMQa1WC3PnzhX27NkT7pLCbtGiRUJycrKgVquF1NRUYdGiRUJdXV1wvNPpFH7wgx8IMTExQkREhPCd73xH6OjoCGPFE2vr1q0CgDN+lixZIgiC+HbwJ598UkhMTBQ0Go1w7bXXCtXV1UOW0dvbK9x+++1CZGSkYDAYhKVLlwo2my0Mr2Z8na2tHA6HMG/ePCE+Pl5QqVRCZmamcN99951xcXEhtNVwbQRAePnll4PTjGS/a2pqEm644QZBp9MJJpNJ+NGPfiR4vd4JfjXj69vaqrm5WbjiiiuE2NhYQaPRCLm5ucJ//ud/ChaLZchyLoS2EgRBuPfee4XMzExBrVYL8fHxwrXXXhsMNoIw+bYrmSAIQuj7g4iIiIjCg8/cEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQ0XnlnnvuwcKFC8NdBhFNYspwF0BEdJpMJjvr+NWrV+O5554DP1idiM6G4YaIJo2Ojo7g76+//jpWrVqF6urq4LDIyEhERkaGozQiOo/wthQRTRpJSUnBH6PRCJlMNmRYZGTkGbelrrrqKjz88MNYvnw5YmJikJiYiN///vew2+1YunQpoqKikJubi48++mjIuo4dO4YbbrgBkZGRSExMxN13342enp4JfsVENB4YbojovPfKK6/AZDLh888/x8MPP4wHH3wQ//qv/4pLLrkEBw4cwLx583D33XfD4XAAAAYGBnDNNddg5syZ2LdvHzZt2oTOzk7827/9W5hfCRGFAsMNEZ33SkpK8MQTTyAvLw8rV66EVquFyWTCfffdh7y8PKxatQq9vb04cuQIAOD555/HzJkz8Ytf/AJTp07FzJkz8dJLL2Hr1q2oqakJ86shonPFZ26I6LxXXFwc/F2hUCAuLg4zZswIDktMTAQAdHV1AQAOHz6MrVu3Dvv8Tn19PfLz88e5YiIaTww3RHTeU6lUQ/6WyWRDhp1+F1YgEAAADA4OYsGCBXjmmWfOWFZycvI4VkpEE4HhhoguOLNmzcLf/vY3ZGVlQankYZBIavjMDRFdcJYtW4a+vj7cfvvt+OKLL1BfX4+PP/4YS5cuhd/vD3d5RHSOGG6I6IKTkpKCzz77DH6/H/PmzcOMGTOwfPlyREdHQy7nYZHofCcT+FGfREREJCG8RCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSfn/Ac+VVgAKHEJbAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Maximum population of level 2:\n" ] }, { "data": { "text/plain": [ "0.015647914604337877" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# calculate and show the time evolution with the shift\n", "system.simulate([1,0,0], 1, 300, Diagonalization=True, delta_stark_shift=shift)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }